Is every diagonalizable matrix is an exponential












1












$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    Apr 6 at 13:41










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    Apr 6 at 14:14


















1












$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    Apr 6 at 13:41










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    Apr 6 at 14:14
















1












1








1





$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$




Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.







linear-algebra lie-groups diagonalization matrix-exponential






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 6 at 14:00









José Carlos Santos

173k23133242




173k23133242










asked Apr 6 at 13:37









PerelManPerelMan

751414




751414








  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    Apr 6 at 13:41










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    Apr 6 at 14:14
















  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    Apr 6 at 13:41










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    Apr 6 at 14:14










2




2




$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
Apr 6 at 13:41




$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
Apr 6 at 13:41












$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
Apr 6 at 14:14






$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
Apr 6 at 14:14












1 Answer
1






active

oldest

votes


















4












$begingroup$

A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






        share|cite|improve this answer











        $endgroup$



        A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 6 at 13:50

























        answered Apr 6 at 13:41









        José Carlos SantosJosé Carlos Santos

        173k23133242




        173k23133242






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            GameSpot

            connect to host localhost port 22: Connection refused

            Getting a Wifi WPA2 wifi connection