Question on branch cuts and branch points
$begingroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt{(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2}$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
functions complex
New contributor
$endgroup$
add a comment |
$begingroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt{(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2}$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
functions complex
New contributor
$endgroup$
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
16 hours ago
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
16 hours ago
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
15 hours ago
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
14 hours ago
add a comment |
$begingroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt{(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2}$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
functions complex
New contributor
$endgroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt{(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2}$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
{x, -10, 10}, {y, -10, 10}, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
functions complex
functions complex
New contributor
New contributor
edited 15 hours ago
topspin
New contributor
asked 17 hours ago
topspintopspin
1313
1313
New contributor
New contributor
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
16 hours ago
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
16 hours ago
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
15 hours ago
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
14 hours ago
add a comment |
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
16 hours ago
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
16 hours ago
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
15 hours ago
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
14 hours ago
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
16 hours ago
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
16 hours ago
1
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
16 hours ago
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
16 hours ago
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
15 hours ago
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
15 hours ago
1
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
14 hours ago
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
14 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
{ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]}
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
{-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]}
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
topspin is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194668%2fquestion-on-branch-cuts-and-branch-points%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
{ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]}
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
{-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]}
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
add a comment |
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
{ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]}
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
{-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]}
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
add a comment |
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
{ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]}
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
{-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]}
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
{ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]}
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
{-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]}
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
answered 14 hours ago
Carl WollCarl Woll
72.8k396188
72.8k396188
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
add a comment |
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Thank you very much .
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
12 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
11 hours ago
add a comment |
topspin is a new contributor. Be nice, and check out our Code of Conduct.
topspin is a new contributor. Be nice, and check out our Code of Conduct.
topspin is a new contributor. Be nice, and check out our Code of Conduct.
topspin is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194668%2fquestion-on-branch-cuts-and-branch-points%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
16 hours ago
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
16 hours ago
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
15 hours ago
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
14 hours ago