Create all numbers from 1-100 using 1,3,3,6












2












$begingroup$


Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.




  • You can only use each number once, except for the $3$, of which you have two.

  • You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).

  • You can combine numbers like $1$ and $3$ to $13$ etc.

  • You must use all numbers.










share|improve this question









New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 2




    $begingroup$
    Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    If we need to take a square root, is the two implied?
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    can we use factorial?
    $endgroup$
    – Omega Krypton
    4 hours ago






  • 2




    $begingroup$
    Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
    $endgroup$
    – Bass
    3 hours ago












  • $begingroup$
    If decimal is allowed then round would probably valid too?
    $endgroup$
    – Mukyuu
    5 mins ago
















2












$begingroup$


Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.




  • You can only use each number once, except for the $3$, of which you have two.

  • You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).

  • You can combine numbers like $1$ and $3$ to $13$ etc.

  • You must use all numbers.










share|improve this question









New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 2




    $begingroup$
    Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    If we need to take a square root, is the two implied?
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    can we use factorial?
    $endgroup$
    – Omega Krypton
    4 hours ago






  • 2




    $begingroup$
    Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
    $endgroup$
    – Bass
    3 hours ago












  • $begingroup$
    If decimal is allowed then round would probably valid too?
    $endgroup$
    – Mukyuu
    5 mins ago














2












2








2





$begingroup$


Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.




  • You can only use each number once, except for the $3$, of which you have two.

  • You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).

  • You can combine numbers like $1$ and $3$ to $13$ etc.

  • You must use all numbers.










share|improve this question









New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.




  • You can only use each number once, except for the $3$, of which you have two.

  • You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).

  • You can combine numbers like $1$ and $3$ to $13$ etc.

  • You must use all numbers.







calculation-puzzle formation-of-numbers






share|improve this question









New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 4 hours ago









Hugh

1,4861617




1,4861617






New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









Michał UraszewskiMichał Uraszewski

112




112




New contributor




Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Michał Uraszewski is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 2




    $begingroup$
    Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    If we need to take a square root, is the two implied?
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    can we use factorial?
    $endgroup$
    – Omega Krypton
    4 hours ago






  • 2




    $begingroup$
    Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
    $endgroup$
    – Bass
    3 hours ago












  • $begingroup$
    If decimal is allowed then round would probably valid too?
    $endgroup$
    – Mukyuu
    5 mins ago














  • 2




    $begingroup$
    Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    If we need to take a square root, is the two implied?
    $endgroup$
    – Hugh
    5 hours ago






  • 1




    $begingroup$
    can we use factorial?
    $endgroup$
    – Omega Krypton
    4 hours ago






  • 2




    $begingroup$
    Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
    $endgroup$
    – Bass
    3 hours ago












  • $begingroup$
    If decimal is allowed then round would probably valid too?
    $endgroup$
    – Mukyuu
    5 mins ago








2




2




$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago




$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago




1




1




$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago




$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago




1




1




$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago




$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago




2




2




$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago






$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago














$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
5 mins ago




$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
5 mins ago










5 Answers
5






active

oldest

votes


















2












$begingroup$

These get harder with larger numbers, but here are the first couple with the digits in order:



1 to 10




1: $1 + 3 + 3 - 6$

2: $(1 + 3) times 3 / 6$

3: $1^3 +3/6$

4: $13 - 3 - 6$

5: $-1^{33} +6$

6: $1times3-3+6$

7: $ 1 + 3 -3 +6$

8: $ 1+3/3 + 6$

9: $ 1^3 times (3+6)$

10: $ 1^3 + 3+6$




11 to 20




11: $ sqrt{1+3}+3+6$

12: $1times 3 + 3 + 6$

13: $1 + 3+3+6$

14: $-1 + 3times 3+6$

15: $-1times3 + 3times 6$

16: $1 - 3 + 3 times 6$

17: $ -1^3 +3times 6$

18: $ (1+3)*3+6 $

19: $13 + sqrt{36}$

20: $-1 + 3^3 - 6$




21 to 30




21: $ 1 * 3^3 - 6 $

22: $ 13 + 3 + 6$

23: $ -13+36 $

24: $ (1+3)timessqrt{36}$

25: $ 1 - 3 + sqrt3^6$

26: $ -1+33-6$

27: $ 1*33-6 $

28: $ 1+33-6$

29: $ -1 + 3 + sqrt3^6$

30: $ (-1+3+3)times 6$




31 to 40




31: $ 13+3*6 $

32: $ -1+3^3+6$

33: $ 13*3-6 $

34: $ 1+3^3+6$

35: $ -1+(3+3)times6 $

36: $ 1times(3+3)times 6$

37: $ 1^3+36$

38: $ sqrt{1+3}+36$

39: $ 1times3 + 36$

40: $ 1+33+6$




41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)




41: $ $

42: $ (1+3+3)times 6$

43: $ $

44: $ $

45: $ 13times3+6$

46: $ $

47: $ $

48: $ $

49: $13+36$

50: $ $







share|improve this answer











$endgroup$





















    1












    $begingroup$

    Here are some:




    1: $3 + 3 - 6 + 1$

    2: $3 * 3 - (6 + 1)$

    3: $3 * 3 * 1 - 6$

    4: $3 * 3 - 6 + 1$

    5: $(3 * 6) / 3 - 1$

    6: $(3 * 6) / 3 * 1$

    7: $(3 * 6) / 3 + 1$

    8: $3 * 3 - 1 ^ 6$

    9: $(3 * 6) / (3 - 1)$

    10: $3 * 3 + 1 ^ 6$

    11: $36 / 3 - 1$

    12: $36 / 3 * 1$

    13: $36 / 3 + 1$

    14: $3 * 6 - (3 + 1)$

    15: $3 * 6 - (3 * 1)$

    16: $3 * 6 - (3 - 1)$

    17: $3 * 6 - 1 ^ 3$

    18: $3 * 6 * 1 ^ 3$

    19: $3 * 6 + 1 ^ 3$

    20: $3 * 6 + 3 - 1$

    22: (omega kyrpton did some) $3 * 6 + 3 + 1$

    23: $3 ^ 3 - 6 * 1$

    24: $3 ^ 3 - (6 - 1)$




    I will do more later.






    share|improve this answer











    $endgroup$





















      1












      $begingroup$

      Adding some more...



      1-20: (Credits to @YoutRied)




      1: $3 + 3 - 6 + 1$

      2: $3 * 3 - (6 + 1)$

      3: $3 * 3 * 1 - 6$

      4: $3 * 3 - 6 + 1$

      5: $(3 * 6) / 3 - 1$

      6: $(3 * 6) / 3 * 1$

      7: $(3 * 6) / 3 + 1$

      8: $3 * 3 - 1 ^ 6$

      9: $(3 * 6) / (3 - 1)$

      10: $3 * 3 + 1 ^ 6$

      11: $36 / 3 - 1$

      12: $36 / 3 * 1$

      13: $36 / 3 + 1$

      14: $3 * 6 - (3 + 1)$

      15: $3 * 6 - (3 * 1)$

      16: $3 * 6 - (3 - 1)$

      17: $3 * 6 - 1 ^ 3$

      18: $3 * 6 * 1 ^ 3$

      19: $3 * 6 + 1 ^ 3$

      20: $3 * 6 + 3 - 1$




      21-29




      21: $3 * 6 + 3 * 1$

      22: $( 1 + 3 ) ! - ( 6 / 3 )$

      23: $( 1 + 3 ) ! - ( 6 - 3 )$

      24: $( 6 - 3 / 3 - 1 ) !$

      25: $1 * 3 ^ 3 - floor(sqrt{6})$

      26: $( 6 - 3 ) ^ 3 - 1$

      27: $( 6 - 3 ) ^ 3 * 1$

      28: $( 6 - 3 ) ^ 3 + 1$

      29: $31 - 6 / 3$




      41-50: (Credits to @Bass for 42, 45, 49)




      41: $ (-1+3!)+36 $

      42: $ (1+3+3)times 6$

      43: $ 31 + 6 * ceil(sqrt{3})$

      44: $floor( 1 * 3 * sqrt{6 ^ 3}) $

      45: $ 13times3+6$

      46: $ ceil(sqrt{6 ^ 3} + 31)$

      47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$

      48: $6 * ( 3 * 3 - 1 )$

      49: $13+36$

      50: $ (6+1)^2 + 3 - 3$




      51-60:




      51: $( 3 * 6 - 1 ) * 3$

      52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$

      53: $-1+( 3 * 3 * 6 )$

      54: $ 1*3 * 3 * 6 $

      55: $1+3*3*6$

      56: $61-3!+floor(sqrt{3})$

      57: $1*63-3!$

      58: $1+63-3!$

      59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$

      60: $(1+3*3)*6$




      61-70:




      61: $63-3+1$

      62: $63+1-ceil(sqrt{3})$

      63: $63-floor(sqrt{3})+1$

      64: $63+ceil(sqrt{3})-1$

      65: $63+3-1$

      66: $63+3*1$

      67: $63+3+1$

      68: $61+3!+floor(sqrt{3})$

      69: $61+3!+ceil(sqrt{3})$

      70: $61+3*3$




      71-75




      71: $(3+1)!*3-floor(sqrt{sqrt{6}})$

      72: $(3+1)*3*6$

      73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
      74: $(3+1)!*3+floor(sqrt{6})$

      75: $(3+1)!*3+ceil(sqrt{6})$







      share|improve this answer











      $endgroup$













      • $begingroup$
        Who said you could use factorials?
        $endgroup$
        – Yout Ried
        3 hours ago










      • $begingroup$
        What are number 23 (plus you probably can't use factorials and 24? I don't get them.
        $endgroup$
        – Yout Ried
        2 hours ago












      • $begingroup$
        Oops forgot a ")" and maybe you're missing a factorial for number 24
        $endgroup$
        – Yout Ried
        2 hours ago



















      0












      $begingroup$

      Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.



      1 to 10




      1: $1 + 3 + 3 - 6$

      2: $(1 + 3) times 3 / 6$

      3: $1^3 +3/6$

      4: $13 - 3 - 6$

      5: $-1^{33} +6$

      6: $1times3-3+6$

      7: $ 1 + 3 -3 +6$

      8: $ 1+3/3 + 6$

      9: $ 1^3 times (3+6)$

      10: $ 1^3 + 3+6$




      11 to 20




      11: $ sqrt{1+3}+3+6$

      12: $1times 3 + 3 + 6$

      13: $1 + 3+3+6$

      14: $-1 + 3times 3+6$

      15: $-1times3 + 3times 6$

      16: $1 - 3 + 3 times 6$

      17: $ -1^3 +3times 6$

      18: $ (1+3)*3+6 $

      19: $13 + sqrt{36}$

      20: $-1 + 3^3 - 6$




      21 to 30




      ! 21: $ 1 * 3^3 - 6 $

      ! 22: $ 13 + 3 + 6$

      ! 23: $ -13+36 $

      ! 24: $ (1+3)timessqrt{36}$

      ! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
      >! 26: $
      -1+33-6$
      >! 27: $
      1*33-6 $
      >! 28: $
      1+33-6$
      >! 29: $
      36-3!-1$
      >! 30: $
      (-1+3+3)times 6$




      31 to 40




      31: $ 13+3*6 $

      32: $ -1+3^3+6$

      33: $ 13*3-6 $

      34: $ 1+3^3+6$

      35: $ -1+(3+3)times6 $

      36: $ 1times(3+3)times 6$

      37: $ 1^3+36$

      38: $ sqrt{1+3}+36$

      39: $ 1times3 + 36$

      40: $ 1+33+6$




      41 to 50




      41: $ $

      42: $ (1+3+3)times 6$

      43: $ 3^3+16$

      44: $ $

      45: $ 13times3+6$

      46: $ $

      47: $ $

      48: $ 16*(3!-3)$

      49: $13+36$

      50: $ 63-13$




      I added a few. It's getting late here; will come back tomorrow.






      share|improve this answer









      $endgroup$





















        0












        $begingroup$

        Partial answer 1-50 (w/e 41,46,47):




        $1= 1+3+3-6$
        $2= 1 + (frac{6}{(3+3)})$
        $3= 1^3+(frac{6}{3})$
        $4= (frac{6}{3})+3-1$
        $5= (frac{6}{3})+3^1$
        $6= 6^1+3-3$
        $7= 6+1-3+3$
        $8= 6 + 3 - 1^3$
        $9= 1^3 * (3+6)$
        $10= 1^3 +3+6$
        $11= 13 - (frac{6}{3})$
        $12= 6+3+3^1$
        $13= 6+3+3+1$
        $14= 6*3 - 3 - 1$
        $15= 6*3 - 3^1$
        $16= 16 + 3 - 3$
        $17= 16 + (frac{3}{3})$
        $18= (frac{6*3}{1^3})$
        $19= 6*3+1^3$
        $20= 6*3+3-1$
        $21= 6*3+3^1$
        $22= 6*3+3+1$
        $23= 36-13$
        $24= 6*(3+1^3)$
        $25= 16+(3*3)$
        $26= 13*(frac{6}{3})$
        $27= 33-6^1$
        $28= 33-6+1$
        $29= 31-(frac{6}{3})$
        $30= 6*(3+3-1)$
        $31= 13+3*6$
        $32= 3^3+6-1$
        $33= (frac{33}{1^6})$
        $34= 33+1^6$
        $35= (3+3)*6-1$
        $36= (3+3)^1*6$
        $37= 1+(3+3)*6$
        $38= 33+6-1$
        $39= 33+6^1$
        $40= 1+33+6$
        $41= $
        $42= (1+3+3)*6$
        $43= 16+3^3$
        $44= (sqrt(6^3))*3^1$
        $45= 3*3*(6-1)$
        $46= $
        $47= $
        $48= ((3*3)-1)*6$
        $49= 16+33$
        $50= 63-13$







        share|improve this answer











        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "559"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f78918%2fcreate-all-numbers-from-1-100-using-1-3-3-6%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          These get harder with larger numbers, but here are the first couple with the digits in order:



          1 to 10




          1: $1 + 3 + 3 - 6$

          2: $(1 + 3) times 3 / 6$

          3: $1^3 +3/6$

          4: $13 - 3 - 6$

          5: $-1^{33} +6$

          6: $1times3-3+6$

          7: $ 1 + 3 -3 +6$

          8: $ 1+3/3 + 6$

          9: $ 1^3 times (3+6)$

          10: $ 1^3 + 3+6$




          11 to 20




          11: $ sqrt{1+3}+3+6$

          12: $1times 3 + 3 + 6$

          13: $1 + 3+3+6$

          14: $-1 + 3times 3+6$

          15: $-1times3 + 3times 6$

          16: $1 - 3 + 3 times 6$

          17: $ -1^3 +3times 6$

          18: $ (1+3)*3+6 $

          19: $13 + sqrt{36}$

          20: $-1 + 3^3 - 6$




          21 to 30




          21: $ 1 * 3^3 - 6 $

          22: $ 13 + 3 + 6$

          23: $ -13+36 $

          24: $ (1+3)timessqrt{36}$

          25: $ 1 - 3 + sqrt3^6$

          26: $ -1+33-6$

          27: $ 1*33-6 $

          28: $ 1+33-6$

          29: $ -1 + 3 + sqrt3^6$

          30: $ (-1+3+3)times 6$




          31 to 40




          31: $ 13+3*6 $

          32: $ -1+3^3+6$

          33: $ 13*3-6 $

          34: $ 1+3^3+6$

          35: $ -1+(3+3)times6 $

          36: $ 1times(3+3)times 6$

          37: $ 1^3+36$

          38: $ sqrt{1+3}+36$

          39: $ 1times3 + 36$

          40: $ 1+33+6$




          41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)




          41: $ $

          42: $ (1+3+3)times 6$

          43: $ $

          44: $ $

          45: $ 13times3+6$

          46: $ $

          47: $ $

          48: $ $

          49: $13+36$

          50: $ $







          share|improve this answer











          $endgroup$


















            2












            $begingroup$

            These get harder with larger numbers, but here are the first couple with the digits in order:



            1 to 10




            1: $1 + 3 + 3 - 6$

            2: $(1 + 3) times 3 / 6$

            3: $1^3 +3/6$

            4: $13 - 3 - 6$

            5: $-1^{33} +6$

            6: $1times3-3+6$

            7: $ 1 + 3 -3 +6$

            8: $ 1+3/3 + 6$

            9: $ 1^3 times (3+6)$

            10: $ 1^3 + 3+6$




            11 to 20




            11: $ sqrt{1+3}+3+6$

            12: $1times 3 + 3 + 6$

            13: $1 + 3+3+6$

            14: $-1 + 3times 3+6$

            15: $-1times3 + 3times 6$

            16: $1 - 3 + 3 times 6$

            17: $ -1^3 +3times 6$

            18: $ (1+3)*3+6 $

            19: $13 + sqrt{36}$

            20: $-1 + 3^3 - 6$




            21 to 30




            21: $ 1 * 3^3 - 6 $

            22: $ 13 + 3 + 6$

            23: $ -13+36 $

            24: $ (1+3)timessqrt{36}$

            25: $ 1 - 3 + sqrt3^6$

            26: $ -1+33-6$

            27: $ 1*33-6 $

            28: $ 1+33-6$

            29: $ -1 + 3 + sqrt3^6$

            30: $ (-1+3+3)times 6$




            31 to 40




            31: $ 13+3*6 $

            32: $ -1+3^3+6$

            33: $ 13*3-6 $

            34: $ 1+3^3+6$

            35: $ -1+(3+3)times6 $

            36: $ 1times(3+3)times 6$

            37: $ 1^3+36$

            38: $ sqrt{1+3}+36$

            39: $ 1times3 + 36$

            40: $ 1+33+6$




            41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)




            41: $ $

            42: $ (1+3+3)times 6$

            43: $ $

            44: $ $

            45: $ 13times3+6$

            46: $ $

            47: $ $

            48: $ $

            49: $13+36$

            50: $ $







            share|improve this answer











            $endgroup$
















              2












              2








              2





              $begingroup$

              These get harder with larger numbers, but here are the first couple with the digits in order:



              1 to 10




              1: $1 + 3 + 3 - 6$

              2: $(1 + 3) times 3 / 6$

              3: $1^3 +3/6$

              4: $13 - 3 - 6$

              5: $-1^{33} +6$

              6: $1times3-3+6$

              7: $ 1 + 3 -3 +6$

              8: $ 1+3/3 + 6$

              9: $ 1^3 times (3+6)$

              10: $ 1^3 + 3+6$




              11 to 20




              11: $ sqrt{1+3}+3+6$

              12: $1times 3 + 3 + 6$

              13: $1 + 3+3+6$

              14: $-1 + 3times 3+6$

              15: $-1times3 + 3times 6$

              16: $1 - 3 + 3 times 6$

              17: $ -1^3 +3times 6$

              18: $ (1+3)*3+6 $

              19: $13 + sqrt{36}$

              20: $-1 + 3^3 - 6$




              21 to 30




              21: $ 1 * 3^3 - 6 $

              22: $ 13 + 3 + 6$

              23: $ -13+36 $

              24: $ (1+3)timessqrt{36}$

              25: $ 1 - 3 + sqrt3^6$

              26: $ -1+33-6$

              27: $ 1*33-6 $

              28: $ 1+33-6$

              29: $ -1 + 3 + sqrt3^6$

              30: $ (-1+3+3)times 6$




              31 to 40




              31: $ 13+3*6 $

              32: $ -1+3^3+6$

              33: $ 13*3-6 $

              34: $ 1+3^3+6$

              35: $ -1+(3+3)times6 $

              36: $ 1times(3+3)times 6$

              37: $ 1^3+36$

              38: $ sqrt{1+3}+36$

              39: $ 1times3 + 36$

              40: $ 1+33+6$




              41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)




              41: $ $

              42: $ (1+3+3)times 6$

              43: $ $

              44: $ $

              45: $ 13times3+6$

              46: $ $

              47: $ $

              48: $ $

              49: $13+36$

              50: $ $







              share|improve this answer











              $endgroup$



              These get harder with larger numbers, but here are the first couple with the digits in order:



              1 to 10




              1: $1 + 3 + 3 - 6$

              2: $(1 + 3) times 3 / 6$

              3: $1^3 +3/6$

              4: $13 - 3 - 6$

              5: $-1^{33} +6$

              6: $1times3-3+6$

              7: $ 1 + 3 -3 +6$

              8: $ 1+3/3 + 6$

              9: $ 1^3 times (3+6)$

              10: $ 1^3 + 3+6$




              11 to 20




              11: $ sqrt{1+3}+3+6$

              12: $1times 3 + 3 + 6$

              13: $1 + 3+3+6$

              14: $-1 + 3times 3+6$

              15: $-1times3 + 3times 6$

              16: $1 - 3 + 3 times 6$

              17: $ -1^3 +3times 6$

              18: $ (1+3)*3+6 $

              19: $13 + sqrt{36}$

              20: $-1 + 3^3 - 6$




              21 to 30




              21: $ 1 * 3^3 - 6 $

              22: $ 13 + 3 + 6$

              23: $ -13+36 $

              24: $ (1+3)timessqrt{36}$

              25: $ 1 - 3 + sqrt3^6$

              26: $ -1+33-6$

              27: $ 1*33-6 $

              28: $ 1+33-6$

              29: $ -1 + 3 + sqrt3^6$

              30: $ (-1+3+3)times 6$




              31 to 40




              31: $ 13+3*6 $

              32: $ -1+3^3+6$

              33: $ 13*3-6 $

              34: $ 1+3^3+6$

              35: $ -1+(3+3)times6 $

              36: $ 1times(3+3)times 6$

              37: $ 1^3+36$

              38: $ sqrt{1+3}+36$

              39: $ 1times3 + 36$

              40: $ 1+33+6$




              41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)




              41: $ $

              42: $ (1+3+3)times 6$

              43: $ $

              44: $ $

              45: $ 13times3+6$

              46: $ $

              47: $ $

              48: $ $

              49: $13+36$

              50: $ $








              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited 29 mins ago

























              answered 2 hours ago









              BassBass

              28.7k470176




              28.7k470176























                  1












                  $begingroup$

                  Here are some:




                  1: $3 + 3 - 6 + 1$

                  2: $3 * 3 - (6 + 1)$

                  3: $3 * 3 * 1 - 6$

                  4: $3 * 3 - 6 + 1$

                  5: $(3 * 6) / 3 - 1$

                  6: $(3 * 6) / 3 * 1$

                  7: $(3 * 6) / 3 + 1$

                  8: $3 * 3 - 1 ^ 6$

                  9: $(3 * 6) / (3 - 1)$

                  10: $3 * 3 + 1 ^ 6$

                  11: $36 / 3 - 1$

                  12: $36 / 3 * 1$

                  13: $36 / 3 + 1$

                  14: $3 * 6 - (3 + 1)$

                  15: $3 * 6 - (3 * 1)$

                  16: $3 * 6 - (3 - 1)$

                  17: $3 * 6 - 1 ^ 3$

                  18: $3 * 6 * 1 ^ 3$

                  19: $3 * 6 + 1 ^ 3$

                  20: $3 * 6 + 3 - 1$

                  22: (omega kyrpton did some) $3 * 6 + 3 + 1$

                  23: $3 ^ 3 - 6 * 1$

                  24: $3 ^ 3 - (6 - 1)$




                  I will do more later.






                  share|improve this answer











                  $endgroup$


















                    1












                    $begingroup$

                    Here are some:




                    1: $3 + 3 - 6 + 1$

                    2: $3 * 3 - (6 + 1)$

                    3: $3 * 3 * 1 - 6$

                    4: $3 * 3 - 6 + 1$

                    5: $(3 * 6) / 3 - 1$

                    6: $(3 * 6) / 3 * 1$

                    7: $(3 * 6) / 3 + 1$

                    8: $3 * 3 - 1 ^ 6$

                    9: $(3 * 6) / (3 - 1)$

                    10: $3 * 3 + 1 ^ 6$

                    11: $36 / 3 - 1$

                    12: $36 / 3 * 1$

                    13: $36 / 3 + 1$

                    14: $3 * 6 - (3 + 1)$

                    15: $3 * 6 - (3 * 1)$

                    16: $3 * 6 - (3 - 1)$

                    17: $3 * 6 - 1 ^ 3$

                    18: $3 * 6 * 1 ^ 3$

                    19: $3 * 6 + 1 ^ 3$

                    20: $3 * 6 + 3 - 1$

                    22: (omega kyrpton did some) $3 * 6 + 3 + 1$

                    23: $3 ^ 3 - 6 * 1$

                    24: $3 ^ 3 - (6 - 1)$




                    I will do more later.






                    share|improve this answer











                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Here are some:




                      1: $3 + 3 - 6 + 1$

                      2: $3 * 3 - (6 + 1)$

                      3: $3 * 3 * 1 - 6$

                      4: $3 * 3 - 6 + 1$

                      5: $(3 * 6) / 3 - 1$

                      6: $(3 * 6) / 3 * 1$

                      7: $(3 * 6) / 3 + 1$

                      8: $3 * 3 - 1 ^ 6$

                      9: $(3 * 6) / (3 - 1)$

                      10: $3 * 3 + 1 ^ 6$

                      11: $36 / 3 - 1$

                      12: $36 / 3 * 1$

                      13: $36 / 3 + 1$

                      14: $3 * 6 - (3 + 1)$

                      15: $3 * 6 - (3 * 1)$

                      16: $3 * 6 - (3 - 1)$

                      17: $3 * 6 - 1 ^ 3$

                      18: $3 * 6 * 1 ^ 3$

                      19: $3 * 6 + 1 ^ 3$

                      20: $3 * 6 + 3 - 1$

                      22: (omega kyrpton did some) $3 * 6 + 3 + 1$

                      23: $3 ^ 3 - 6 * 1$

                      24: $3 ^ 3 - (6 - 1)$




                      I will do more later.






                      share|improve this answer











                      $endgroup$



                      Here are some:




                      1: $3 + 3 - 6 + 1$

                      2: $3 * 3 - (6 + 1)$

                      3: $3 * 3 * 1 - 6$

                      4: $3 * 3 - 6 + 1$

                      5: $(3 * 6) / 3 - 1$

                      6: $(3 * 6) / 3 * 1$

                      7: $(3 * 6) / 3 + 1$

                      8: $3 * 3 - 1 ^ 6$

                      9: $(3 * 6) / (3 - 1)$

                      10: $3 * 3 + 1 ^ 6$

                      11: $36 / 3 - 1$

                      12: $36 / 3 * 1$

                      13: $36 / 3 + 1$

                      14: $3 * 6 - (3 + 1)$

                      15: $3 * 6 - (3 * 1)$

                      16: $3 * 6 - (3 - 1)$

                      17: $3 * 6 - 1 ^ 3$

                      18: $3 * 6 * 1 ^ 3$

                      19: $3 * 6 + 1 ^ 3$

                      20: $3 * 6 + 3 - 1$

                      22: (omega kyrpton did some) $3 * 6 + 3 + 1$

                      23: $3 ^ 3 - 6 * 1$

                      24: $3 ^ 3 - (6 - 1)$




                      I will do more later.







                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 2 hours ago

























                      answered 5 hours ago









                      Yout RiedYout Ried

                      769119




                      769119























                          1












                          $begingroup$

                          Adding some more...



                          1-20: (Credits to @YoutRied)




                          1: $3 + 3 - 6 + 1$

                          2: $3 * 3 - (6 + 1)$

                          3: $3 * 3 * 1 - 6$

                          4: $3 * 3 - 6 + 1$

                          5: $(3 * 6) / 3 - 1$

                          6: $(3 * 6) / 3 * 1$

                          7: $(3 * 6) / 3 + 1$

                          8: $3 * 3 - 1 ^ 6$

                          9: $(3 * 6) / (3 - 1)$

                          10: $3 * 3 + 1 ^ 6$

                          11: $36 / 3 - 1$

                          12: $36 / 3 * 1$

                          13: $36 / 3 + 1$

                          14: $3 * 6 - (3 + 1)$

                          15: $3 * 6 - (3 * 1)$

                          16: $3 * 6 - (3 - 1)$

                          17: $3 * 6 - 1 ^ 3$

                          18: $3 * 6 * 1 ^ 3$

                          19: $3 * 6 + 1 ^ 3$

                          20: $3 * 6 + 3 - 1$




                          21-29




                          21: $3 * 6 + 3 * 1$

                          22: $( 1 + 3 ) ! - ( 6 / 3 )$

                          23: $( 1 + 3 ) ! - ( 6 - 3 )$

                          24: $( 6 - 3 / 3 - 1 ) !$

                          25: $1 * 3 ^ 3 - floor(sqrt{6})$

                          26: $( 6 - 3 ) ^ 3 - 1$

                          27: $( 6 - 3 ) ^ 3 * 1$

                          28: $( 6 - 3 ) ^ 3 + 1$

                          29: $31 - 6 / 3$




                          41-50: (Credits to @Bass for 42, 45, 49)




                          41: $ (-1+3!)+36 $

                          42: $ (1+3+3)times 6$

                          43: $ 31 + 6 * ceil(sqrt{3})$

                          44: $floor( 1 * 3 * sqrt{6 ^ 3}) $

                          45: $ 13times3+6$

                          46: $ ceil(sqrt{6 ^ 3} + 31)$

                          47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$

                          48: $6 * ( 3 * 3 - 1 )$

                          49: $13+36$

                          50: $ (6+1)^2 + 3 - 3$




                          51-60:




                          51: $( 3 * 6 - 1 ) * 3$

                          52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$

                          53: $-1+( 3 * 3 * 6 )$

                          54: $ 1*3 * 3 * 6 $

                          55: $1+3*3*6$

                          56: $61-3!+floor(sqrt{3})$

                          57: $1*63-3!$

                          58: $1+63-3!$

                          59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$

                          60: $(1+3*3)*6$




                          61-70:




                          61: $63-3+1$

                          62: $63+1-ceil(sqrt{3})$

                          63: $63-floor(sqrt{3})+1$

                          64: $63+ceil(sqrt{3})-1$

                          65: $63+3-1$

                          66: $63+3*1$

                          67: $63+3+1$

                          68: $61+3!+floor(sqrt{3})$

                          69: $61+3!+ceil(sqrt{3})$

                          70: $61+3*3$




                          71-75




                          71: $(3+1)!*3-floor(sqrt{sqrt{6}})$

                          72: $(3+1)*3*6$

                          73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
                          74: $(3+1)!*3+floor(sqrt{6})$

                          75: $(3+1)!*3+ceil(sqrt{6})$







                          share|improve this answer











                          $endgroup$













                          • $begingroup$
                            Who said you could use factorials?
                            $endgroup$
                            – Yout Ried
                            3 hours ago










                          • $begingroup$
                            What are number 23 (plus you probably can't use factorials and 24? I don't get them.
                            $endgroup$
                            – Yout Ried
                            2 hours ago












                          • $begingroup$
                            Oops forgot a ")" and maybe you're missing a factorial for number 24
                            $endgroup$
                            – Yout Ried
                            2 hours ago
















                          1












                          $begingroup$

                          Adding some more...



                          1-20: (Credits to @YoutRied)




                          1: $3 + 3 - 6 + 1$

                          2: $3 * 3 - (6 + 1)$

                          3: $3 * 3 * 1 - 6$

                          4: $3 * 3 - 6 + 1$

                          5: $(3 * 6) / 3 - 1$

                          6: $(3 * 6) / 3 * 1$

                          7: $(3 * 6) / 3 + 1$

                          8: $3 * 3 - 1 ^ 6$

                          9: $(3 * 6) / (3 - 1)$

                          10: $3 * 3 + 1 ^ 6$

                          11: $36 / 3 - 1$

                          12: $36 / 3 * 1$

                          13: $36 / 3 + 1$

                          14: $3 * 6 - (3 + 1)$

                          15: $3 * 6 - (3 * 1)$

                          16: $3 * 6 - (3 - 1)$

                          17: $3 * 6 - 1 ^ 3$

                          18: $3 * 6 * 1 ^ 3$

                          19: $3 * 6 + 1 ^ 3$

                          20: $3 * 6 + 3 - 1$




                          21-29




                          21: $3 * 6 + 3 * 1$

                          22: $( 1 + 3 ) ! - ( 6 / 3 )$

                          23: $( 1 + 3 ) ! - ( 6 - 3 )$

                          24: $( 6 - 3 / 3 - 1 ) !$

                          25: $1 * 3 ^ 3 - floor(sqrt{6})$

                          26: $( 6 - 3 ) ^ 3 - 1$

                          27: $( 6 - 3 ) ^ 3 * 1$

                          28: $( 6 - 3 ) ^ 3 + 1$

                          29: $31 - 6 / 3$




                          41-50: (Credits to @Bass for 42, 45, 49)




                          41: $ (-1+3!)+36 $

                          42: $ (1+3+3)times 6$

                          43: $ 31 + 6 * ceil(sqrt{3})$

                          44: $floor( 1 * 3 * sqrt{6 ^ 3}) $

                          45: $ 13times3+6$

                          46: $ ceil(sqrt{6 ^ 3} + 31)$

                          47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$

                          48: $6 * ( 3 * 3 - 1 )$

                          49: $13+36$

                          50: $ (6+1)^2 + 3 - 3$




                          51-60:




                          51: $( 3 * 6 - 1 ) * 3$

                          52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$

                          53: $-1+( 3 * 3 * 6 )$

                          54: $ 1*3 * 3 * 6 $

                          55: $1+3*3*6$

                          56: $61-3!+floor(sqrt{3})$

                          57: $1*63-3!$

                          58: $1+63-3!$

                          59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$

                          60: $(1+3*3)*6$




                          61-70:




                          61: $63-3+1$

                          62: $63+1-ceil(sqrt{3})$

                          63: $63-floor(sqrt{3})+1$

                          64: $63+ceil(sqrt{3})-1$

                          65: $63+3-1$

                          66: $63+3*1$

                          67: $63+3+1$

                          68: $61+3!+floor(sqrt{3})$

                          69: $61+3!+ceil(sqrt{3})$

                          70: $61+3*3$




                          71-75




                          71: $(3+1)!*3-floor(sqrt{sqrt{6}})$

                          72: $(3+1)*3*6$

                          73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
                          74: $(3+1)!*3+floor(sqrt{6})$

                          75: $(3+1)!*3+ceil(sqrt{6})$







                          share|improve this answer











                          $endgroup$













                          • $begingroup$
                            Who said you could use factorials?
                            $endgroup$
                            – Yout Ried
                            3 hours ago










                          • $begingroup$
                            What are number 23 (plus you probably can't use factorials and 24? I don't get them.
                            $endgroup$
                            – Yout Ried
                            2 hours ago












                          • $begingroup$
                            Oops forgot a ")" and maybe you're missing a factorial for number 24
                            $endgroup$
                            – Yout Ried
                            2 hours ago














                          1












                          1








                          1





                          $begingroup$

                          Adding some more...



                          1-20: (Credits to @YoutRied)




                          1: $3 + 3 - 6 + 1$

                          2: $3 * 3 - (6 + 1)$

                          3: $3 * 3 * 1 - 6$

                          4: $3 * 3 - 6 + 1$

                          5: $(3 * 6) / 3 - 1$

                          6: $(3 * 6) / 3 * 1$

                          7: $(3 * 6) / 3 + 1$

                          8: $3 * 3 - 1 ^ 6$

                          9: $(3 * 6) / (3 - 1)$

                          10: $3 * 3 + 1 ^ 6$

                          11: $36 / 3 - 1$

                          12: $36 / 3 * 1$

                          13: $36 / 3 + 1$

                          14: $3 * 6 - (3 + 1)$

                          15: $3 * 6 - (3 * 1)$

                          16: $3 * 6 - (3 - 1)$

                          17: $3 * 6 - 1 ^ 3$

                          18: $3 * 6 * 1 ^ 3$

                          19: $3 * 6 + 1 ^ 3$

                          20: $3 * 6 + 3 - 1$




                          21-29




                          21: $3 * 6 + 3 * 1$

                          22: $( 1 + 3 ) ! - ( 6 / 3 )$

                          23: $( 1 + 3 ) ! - ( 6 - 3 )$

                          24: $( 6 - 3 / 3 - 1 ) !$

                          25: $1 * 3 ^ 3 - floor(sqrt{6})$

                          26: $( 6 - 3 ) ^ 3 - 1$

                          27: $( 6 - 3 ) ^ 3 * 1$

                          28: $( 6 - 3 ) ^ 3 + 1$

                          29: $31 - 6 / 3$




                          41-50: (Credits to @Bass for 42, 45, 49)




                          41: $ (-1+3!)+36 $

                          42: $ (1+3+3)times 6$

                          43: $ 31 + 6 * ceil(sqrt{3})$

                          44: $floor( 1 * 3 * sqrt{6 ^ 3}) $

                          45: $ 13times3+6$

                          46: $ ceil(sqrt{6 ^ 3} + 31)$

                          47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$

                          48: $6 * ( 3 * 3 - 1 )$

                          49: $13+36$

                          50: $ (6+1)^2 + 3 - 3$




                          51-60:




                          51: $( 3 * 6 - 1 ) * 3$

                          52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$

                          53: $-1+( 3 * 3 * 6 )$

                          54: $ 1*3 * 3 * 6 $

                          55: $1+3*3*6$

                          56: $61-3!+floor(sqrt{3})$

                          57: $1*63-3!$

                          58: $1+63-3!$

                          59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$

                          60: $(1+3*3)*6$




                          61-70:




                          61: $63-3+1$

                          62: $63+1-ceil(sqrt{3})$

                          63: $63-floor(sqrt{3})+1$

                          64: $63+ceil(sqrt{3})-1$

                          65: $63+3-1$

                          66: $63+3*1$

                          67: $63+3+1$

                          68: $61+3!+floor(sqrt{3})$

                          69: $61+3!+ceil(sqrt{3})$

                          70: $61+3*3$




                          71-75




                          71: $(3+1)!*3-floor(sqrt{sqrt{6}})$

                          72: $(3+1)*3*6$

                          73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
                          74: $(3+1)!*3+floor(sqrt{6})$

                          75: $(3+1)!*3+ceil(sqrt{6})$







                          share|improve this answer











                          $endgroup$



                          Adding some more...



                          1-20: (Credits to @YoutRied)




                          1: $3 + 3 - 6 + 1$

                          2: $3 * 3 - (6 + 1)$

                          3: $3 * 3 * 1 - 6$

                          4: $3 * 3 - 6 + 1$

                          5: $(3 * 6) / 3 - 1$

                          6: $(3 * 6) / 3 * 1$

                          7: $(3 * 6) / 3 + 1$

                          8: $3 * 3 - 1 ^ 6$

                          9: $(3 * 6) / (3 - 1)$

                          10: $3 * 3 + 1 ^ 6$

                          11: $36 / 3 - 1$

                          12: $36 / 3 * 1$

                          13: $36 / 3 + 1$

                          14: $3 * 6 - (3 + 1)$

                          15: $3 * 6 - (3 * 1)$

                          16: $3 * 6 - (3 - 1)$

                          17: $3 * 6 - 1 ^ 3$

                          18: $3 * 6 * 1 ^ 3$

                          19: $3 * 6 + 1 ^ 3$

                          20: $3 * 6 + 3 - 1$




                          21-29




                          21: $3 * 6 + 3 * 1$

                          22: $( 1 + 3 ) ! - ( 6 / 3 )$

                          23: $( 1 + 3 ) ! - ( 6 - 3 )$

                          24: $( 6 - 3 / 3 - 1 ) !$

                          25: $1 * 3 ^ 3 - floor(sqrt{6})$

                          26: $( 6 - 3 ) ^ 3 - 1$

                          27: $( 6 - 3 ) ^ 3 * 1$

                          28: $( 6 - 3 ) ^ 3 + 1$

                          29: $31 - 6 / 3$




                          41-50: (Credits to @Bass for 42, 45, 49)




                          41: $ (-1+3!)+36 $

                          42: $ (1+3+3)times 6$

                          43: $ 31 + 6 * ceil(sqrt{3})$

                          44: $floor( 1 * 3 * sqrt{6 ^ 3}) $

                          45: $ 13times3+6$

                          46: $ ceil(sqrt{6 ^ 3} + 31)$

                          47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$

                          48: $6 * ( 3 * 3 - 1 )$

                          49: $13+36$

                          50: $ (6+1)^2 + 3 - 3$




                          51-60:




                          51: $( 3 * 6 - 1 ) * 3$

                          52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$

                          53: $-1+( 3 * 3 * 6 )$

                          54: $ 1*3 * 3 * 6 $

                          55: $1+3*3*6$

                          56: $61-3!+floor(sqrt{3})$

                          57: $1*63-3!$

                          58: $1+63-3!$

                          59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$

                          60: $(1+3*3)*6$




                          61-70:




                          61: $63-3+1$

                          62: $63+1-ceil(sqrt{3})$

                          63: $63-floor(sqrt{3})+1$

                          64: $63+ceil(sqrt{3})-1$

                          65: $63+3-1$

                          66: $63+3*1$

                          67: $63+3+1$

                          68: $61+3!+floor(sqrt{3})$

                          69: $61+3!+ceil(sqrt{3})$

                          70: $61+3*3$




                          71-75




                          71: $(3+1)!*3-floor(sqrt{sqrt{6}})$

                          72: $(3+1)*3*6$

                          73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
                          74: $(3+1)!*3+floor(sqrt{6})$

                          75: $(3+1)!*3+ceil(sqrt{6})$








                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 6 mins ago

























                          answered 4 hours ago









                          Omega KryptonOmega Krypton

                          2,9851232




                          2,9851232












                          • $begingroup$
                            Who said you could use factorials?
                            $endgroup$
                            – Yout Ried
                            3 hours ago










                          • $begingroup$
                            What are number 23 (plus you probably can't use factorials and 24? I don't get them.
                            $endgroup$
                            – Yout Ried
                            2 hours ago












                          • $begingroup$
                            Oops forgot a ")" and maybe you're missing a factorial for number 24
                            $endgroup$
                            – Yout Ried
                            2 hours ago


















                          • $begingroup$
                            Who said you could use factorials?
                            $endgroup$
                            – Yout Ried
                            3 hours ago










                          • $begingroup$
                            What are number 23 (plus you probably can't use factorials and 24? I don't get them.
                            $endgroup$
                            – Yout Ried
                            2 hours ago












                          • $begingroup$
                            Oops forgot a ")" and maybe you're missing a factorial for number 24
                            $endgroup$
                            – Yout Ried
                            2 hours ago
















                          $begingroup$
                          Who said you could use factorials?
                          $endgroup$
                          – Yout Ried
                          3 hours ago




                          $begingroup$
                          Who said you could use factorials?
                          $endgroup$
                          – Yout Ried
                          3 hours ago












                          $begingroup$
                          What are number 23 (plus you probably can't use factorials and 24? I don't get them.
                          $endgroup$
                          – Yout Ried
                          2 hours ago






                          $begingroup$
                          What are number 23 (plus you probably can't use factorials and 24? I don't get them.
                          $endgroup$
                          – Yout Ried
                          2 hours ago














                          $begingroup$
                          Oops forgot a ")" and maybe you're missing a factorial for number 24
                          $endgroup$
                          – Yout Ried
                          2 hours ago




                          $begingroup$
                          Oops forgot a ")" and maybe you're missing a factorial for number 24
                          $endgroup$
                          – Yout Ried
                          2 hours ago











                          0












                          $begingroup$

                          Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.



                          1 to 10




                          1: $1 + 3 + 3 - 6$

                          2: $(1 + 3) times 3 / 6$

                          3: $1^3 +3/6$

                          4: $13 - 3 - 6$

                          5: $-1^{33} +6$

                          6: $1times3-3+6$

                          7: $ 1 + 3 -3 +6$

                          8: $ 1+3/3 + 6$

                          9: $ 1^3 times (3+6)$

                          10: $ 1^3 + 3+6$




                          11 to 20




                          11: $ sqrt{1+3}+3+6$

                          12: $1times 3 + 3 + 6$

                          13: $1 + 3+3+6$

                          14: $-1 + 3times 3+6$

                          15: $-1times3 + 3times 6$

                          16: $1 - 3 + 3 times 6$

                          17: $ -1^3 +3times 6$

                          18: $ (1+3)*3+6 $

                          19: $13 + sqrt{36}$

                          20: $-1 + 3^3 - 6$




                          21 to 30




                          ! 21: $ 1 * 3^3 - 6 $

                          ! 22: $ 13 + 3 + 6$

                          ! 23: $ -13+36 $

                          ! 24: $ (1+3)timessqrt{36}$

                          ! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
                          >! 26: $
                          -1+33-6$
                          >! 27: $
                          1*33-6 $
                          >! 28: $
                          1+33-6$
                          >! 29: $
                          36-3!-1$
                          >! 30: $
                          (-1+3+3)times 6$




                          31 to 40




                          31: $ 13+3*6 $

                          32: $ -1+3^3+6$

                          33: $ 13*3-6 $

                          34: $ 1+3^3+6$

                          35: $ -1+(3+3)times6 $

                          36: $ 1times(3+3)times 6$

                          37: $ 1^3+36$

                          38: $ sqrt{1+3}+36$

                          39: $ 1times3 + 36$

                          40: $ 1+33+6$




                          41 to 50




                          41: $ $

                          42: $ (1+3+3)times 6$

                          43: $ 3^3+16$

                          44: $ $

                          45: $ 13times3+6$

                          46: $ $

                          47: $ $

                          48: $ 16*(3!-3)$

                          49: $13+36$

                          50: $ 63-13$




                          I added a few. It's getting late here; will come back tomorrow.






                          share|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.



                            1 to 10




                            1: $1 + 3 + 3 - 6$

                            2: $(1 + 3) times 3 / 6$

                            3: $1^3 +3/6$

                            4: $13 - 3 - 6$

                            5: $-1^{33} +6$

                            6: $1times3-3+6$

                            7: $ 1 + 3 -3 +6$

                            8: $ 1+3/3 + 6$

                            9: $ 1^3 times (3+6)$

                            10: $ 1^3 + 3+6$




                            11 to 20




                            11: $ sqrt{1+3}+3+6$

                            12: $1times 3 + 3 + 6$

                            13: $1 + 3+3+6$

                            14: $-1 + 3times 3+6$

                            15: $-1times3 + 3times 6$

                            16: $1 - 3 + 3 times 6$

                            17: $ -1^3 +3times 6$

                            18: $ (1+3)*3+6 $

                            19: $13 + sqrt{36}$

                            20: $-1 + 3^3 - 6$




                            21 to 30




                            ! 21: $ 1 * 3^3 - 6 $

                            ! 22: $ 13 + 3 + 6$

                            ! 23: $ -13+36 $

                            ! 24: $ (1+3)timessqrt{36}$

                            ! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
                            >! 26: $
                            -1+33-6$
                            >! 27: $
                            1*33-6 $
                            >! 28: $
                            1+33-6$
                            >! 29: $
                            36-3!-1$
                            >! 30: $
                            (-1+3+3)times 6$




                            31 to 40




                            31: $ 13+3*6 $

                            32: $ -1+3^3+6$

                            33: $ 13*3-6 $

                            34: $ 1+3^3+6$

                            35: $ -1+(3+3)times6 $

                            36: $ 1times(3+3)times 6$

                            37: $ 1^3+36$

                            38: $ sqrt{1+3}+36$

                            39: $ 1times3 + 36$

                            40: $ 1+33+6$




                            41 to 50




                            41: $ $

                            42: $ (1+3+3)times 6$

                            43: $ 3^3+16$

                            44: $ $

                            45: $ 13times3+6$

                            46: $ $

                            47: $ $

                            48: $ 16*(3!-3)$

                            49: $13+36$

                            50: $ 63-13$




                            I added a few. It's getting late here; will come back tomorrow.






                            share|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.



                              1 to 10




                              1: $1 + 3 + 3 - 6$

                              2: $(1 + 3) times 3 / 6$

                              3: $1^3 +3/6$

                              4: $13 - 3 - 6$

                              5: $-1^{33} +6$

                              6: $1times3-3+6$

                              7: $ 1 + 3 -3 +6$

                              8: $ 1+3/3 + 6$

                              9: $ 1^3 times (3+6)$

                              10: $ 1^3 + 3+6$




                              11 to 20




                              11: $ sqrt{1+3}+3+6$

                              12: $1times 3 + 3 + 6$

                              13: $1 + 3+3+6$

                              14: $-1 + 3times 3+6$

                              15: $-1times3 + 3times 6$

                              16: $1 - 3 + 3 times 6$

                              17: $ -1^3 +3times 6$

                              18: $ (1+3)*3+6 $

                              19: $13 + sqrt{36}$

                              20: $-1 + 3^3 - 6$




                              21 to 30




                              ! 21: $ 1 * 3^3 - 6 $

                              ! 22: $ 13 + 3 + 6$

                              ! 23: $ -13+36 $

                              ! 24: $ (1+3)timessqrt{36}$

                              ! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
                              >! 26: $
                              -1+33-6$
                              >! 27: $
                              1*33-6 $
                              >! 28: $
                              1+33-6$
                              >! 29: $
                              36-3!-1$
                              >! 30: $
                              (-1+3+3)times 6$




                              31 to 40




                              31: $ 13+3*6 $

                              32: $ -1+3^3+6$

                              33: $ 13*3-6 $

                              34: $ 1+3^3+6$

                              35: $ -1+(3+3)times6 $

                              36: $ 1times(3+3)times 6$

                              37: $ 1^3+36$

                              38: $ sqrt{1+3}+36$

                              39: $ 1times3 + 36$

                              40: $ 1+33+6$




                              41 to 50




                              41: $ $

                              42: $ (1+3+3)times 6$

                              43: $ 3^3+16$

                              44: $ $

                              45: $ 13times3+6$

                              46: $ $

                              47: $ $

                              48: $ 16*(3!-3)$

                              49: $13+36$

                              50: $ 63-13$




                              I added a few. It's getting late here; will come back tomorrow.






                              share|improve this answer









                              $endgroup$



                              Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.



                              1 to 10




                              1: $1 + 3 + 3 - 6$

                              2: $(1 + 3) times 3 / 6$

                              3: $1^3 +3/6$

                              4: $13 - 3 - 6$

                              5: $-1^{33} +6$

                              6: $1times3-3+6$

                              7: $ 1 + 3 -3 +6$

                              8: $ 1+3/3 + 6$

                              9: $ 1^3 times (3+6)$

                              10: $ 1^3 + 3+6$




                              11 to 20




                              11: $ sqrt{1+3}+3+6$

                              12: $1times 3 + 3 + 6$

                              13: $1 + 3+3+6$

                              14: $-1 + 3times 3+6$

                              15: $-1times3 + 3times 6$

                              16: $1 - 3 + 3 times 6$

                              17: $ -1^3 +3times 6$

                              18: $ (1+3)*3+6 $

                              19: $13 + sqrt{36}$

                              20: $-1 + 3^3 - 6$




                              21 to 30




                              ! 21: $ 1 * 3^3 - 6 $

                              ! 22: $ 13 + 3 + 6$

                              ! 23: $ -13+36 $

                              ! 24: $ (1+3)timessqrt{36}$

                              ! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
                              >! 26: $
                              -1+33-6$
                              >! 27: $
                              1*33-6 $
                              >! 28: $
                              1+33-6$
                              >! 29: $
                              36-3!-1$
                              >! 30: $
                              (-1+3+3)times 6$




                              31 to 40




                              31: $ 13+3*6 $

                              32: $ -1+3^3+6$

                              33: $ 13*3-6 $

                              34: $ 1+3^3+6$

                              35: $ -1+(3+3)times6 $

                              36: $ 1times(3+3)times 6$

                              37: $ 1^3+36$

                              38: $ sqrt{1+3}+36$

                              39: $ 1times3 + 36$

                              40: $ 1+33+6$




                              41 to 50




                              41: $ $

                              42: $ (1+3+3)times 6$

                              43: $ 3^3+16$

                              44: $ $

                              45: $ 13times3+6$

                              46: $ $

                              47: $ $

                              48: $ 16*(3!-3)$

                              49: $13+36$

                              50: $ 63-13$




                              I added a few. It's getting late here; will come back tomorrow.







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 37 mins ago









                              Brandon_JBrandon_J

                              1,16326




                              1,16326























                                  0












                                  $begingroup$

                                  Partial answer 1-50 (w/e 41,46,47):




                                  $1= 1+3+3-6$
                                  $2= 1 + (frac{6}{(3+3)})$
                                  $3= 1^3+(frac{6}{3})$
                                  $4= (frac{6}{3})+3-1$
                                  $5= (frac{6}{3})+3^1$
                                  $6= 6^1+3-3$
                                  $7= 6+1-3+3$
                                  $8= 6 + 3 - 1^3$
                                  $9= 1^3 * (3+6)$
                                  $10= 1^3 +3+6$
                                  $11= 13 - (frac{6}{3})$
                                  $12= 6+3+3^1$
                                  $13= 6+3+3+1$
                                  $14= 6*3 - 3 - 1$
                                  $15= 6*3 - 3^1$
                                  $16= 16 + 3 - 3$
                                  $17= 16 + (frac{3}{3})$
                                  $18= (frac{6*3}{1^3})$
                                  $19= 6*3+1^3$
                                  $20= 6*3+3-1$
                                  $21= 6*3+3^1$
                                  $22= 6*3+3+1$
                                  $23= 36-13$
                                  $24= 6*(3+1^3)$
                                  $25= 16+(3*3)$
                                  $26= 13*(frac{6}{3})$
                                  $27= 33-6^1$
                                  $28= 33-6+1$
                                  $29= 31-(frac{6}{3})$
                                  $30= 6*(3+3-1)$
                                  $31= 13+3*6$
                                  $32= 3^3+6-1$
                                  $33= (frac{33}{1^6})$
                                  $34= 33+1^6$
                                  $35= (3+3)*6-1$
                                  $36= (3+3)^1*6$
                                  $37= 1+(3+3)*6$
                                  $38= 33+6-1$
                                  $39= 33+6^1$
                                  $40= 1+33+6$
                                  $41= $
                                  $42= (1+3+3)*6$
                                  $43= 16+3^3$
                                  $44= (sqrt(6^3))*3^1$
                                  $45= 3*3*(6-1)$
                                  $46= $
                                  $47= $
                                  $48= ((3*3)-1)*6$
                                  $49= 16+33$
                                  $50= 63-13$







                                  share|improve this answer











                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Partial answer 1-50 (w/e 41,46,47):




                                    $1= 1+3+3-6$
                                    $2= 1 + (frac{6}{(3+3)})$
                                    $3= 1^3+(frac{6}{3})$
                                    $4= (frac{6}{3})+3-1$
                                    $5= (frac{6}{3})+3^1$
                                    $6= 6^1+3-3$
                                    $7= 6+1-3+3$
                                    $8= 6 + 3 - 1^3$
                                    $9= 1^3 * (3+6)$
                                    $10= 1^3 +3+6$
                                    $11= 13 - (frac{6}{3})$
                                    $12= 6+3+3^1$
                                    $13= 6+3+3+1$
                                    $14= 6*3 - 3 - 1$
                                    $15= 6*3 - 3^1$
                                    $16= 16 + 3 - 3$
                                    $17= 16 + (frac{3}{3})$
                                    $18= (frac{6*3}{1^3})$
                                    $19= 6*3+1^3$
                                    $20= 6*3+3-1$
                                    $21= 6*3+3^1$
                                    $22= 6*3+3+1$
                                    $23= 36-13$
                                    $24= 6*(3+1^3)$
                                    $25= 16+(3*3)$
                                    $26= 13*(frac{6}{3})$
                                    $27= 33-6^1$
                                    $28= 33-6+1$
                                    $29= 31-(frac{6}{3})$
                                    $30= 6*(3+3-1)$
                                    $31= 13+3*6$
                                    $32= 3^3+6-1$
                                    $33= (frac{33}{1^6})$
                                    $34= 33+1^6$
                                    $35= (3+3)*6-1$
                                    $36= (3+3)^1*6$
                                    $37= 1+(3+3)*6$
                                    $38= 33+6-1$
                                    $39= 33+6^1$
                                    $40= 1+33+6$
                                    $41= $
                                    $42= (1+3+3)*6$
                                    $43= 16+3^3$
                                    $44= (sqrt(6^3))*3^1$
                                    $45= 3*3*(6-1)$
                                    $46= $
                                    $47= $
                                    $48= ((3*3)-1)*6$
                                    $49= 16+33$
                                    $50= 63-13$







                                    share|improve this answer











                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Partial answer 1-50 (w/e 41,46,47):




                                      $1= 1+3+3-6$
                                      $2= 1 + (frac{6}{(3+3)})$
                                      $3= 1^3+(frac{6}{3})$
                                      $4= (frac{6}{3})+3-1$
                                      $5= (frac{6}{3})+3^1$
                                      $6= 6^1+3-3$
                                      $7= 6+1-3+3$
                                      $8= 6 + 3 - 1^3$
                                      $9= 1^3 * (3+6)$
                                      $10= 1^3 +3+6$
                                      $11= 13 - (frac{6}{3})$
                                      $12= 6+3+3^1$
                                      $13= 6+3+3+1$
                                      $14= 6*3 - 3 - 1$
                                      $15= 6*3 - 3^1$
                                      $16= 16 + 3 - 3$
                                      $17= 16 + (frac{3}{3})$
                                      $18= (frac{6*3}{1^3})$
                                      $19= 6*3+1^3$
                                      $20= 6*3+3-1$
                                      $21= 6*3+3^1$
                                      $22= 6*3+3+1$
                                      $23= 36-13$
                                      $24= 6*(3+1^3)$
                                      $25= 16+(3*3)$
                                      $26= 13*(frac{6}{3})$
                                      $27= 33-6^1$
                                      $28= 33-6+1$
                                      $29= 31-(frac{6}{3})$
                                      $30= 6*(3+3-1)$
                                      $31= 13+3*6$
                                      $32= 3^3+6-1$
                                      $33= (frac{33}{1^6})$
                                      $34= 33+1^6$
                                      $35= (3+3)*6-1$
                                      $36= (3+3)^1*6$
                                      $37= 1+(3+3)*6$
                                      $38= 33+6-1$
                                      $39= 33+6^1$
                                      $40= 1+33+6$
                                      $41= $
                                      $42= (1+3+3)*6$
                                      $43= 16+3^3$
                                      $44= (sqrt(6^3))*3^1$
                                      $45= 3*3*(6-1)$
                                      $46= $
                                      $47= $
                                      $48= ((3*3)-1)*6$
                                      $49= 16+33$
                                      $50= 63-13$







                                      share|improve this answer











                                      $endgroup$



                                      Partial answer 1-50 (w/e 41,46,47):




                                      $1= 1+3+3-6$
                                      $2= 1 + (frac{6}{(3+3)})$
                                      $3= 1^3+(frac{6}{3})$
                                      $4= (frac{6}{3})+3-1$
                                      $5= (frac{6}{3})+3^1$
                                      $6= 6^1+3-3$
                                      $7= 6+1-3+3$
                                      $8= 6 + 3 - 1^3$
                                      $9= 1^3 * (3+6)$
                                      $10= 1^3 +3+6$
                                      $11= 13 - (frac{6}{3})$
                                      $12= 6+3+3^1$
                                      $13= 6+3+3+1$
                                      $14= 6*3 - 3 - 1$
                                      $15= 6*3 - 3^1$
                                      $16= 16 + 3 - 3$
                                      $17= 16 + (frac{3}{3})$
                                      $18= (frac{6*3}{1^3})$
                                      $19= 6*3+1^3$
                                      $20= 6*3+3-1$
                                      $21= 6*3+3^1$
                                      $22= 6*3+3+1$
                                      $23= 36-13$
                                      $24= 6*(3+1^3)$
                                      $25= 16+(3*3)$
                                      $26= 13*(frac{6}{3})$
                                      $27= 33-6^1$
                                      $28= 33-6+1$
                                      $29= 31-(frac{6}{3})$
                                      $30= 6*(3+3-1)$
                                      $31= 13+3*6$
                                      $32= 3^3+6-1$
                                      $33= (frac{33}{1^6})$
                                      $34= 33+1^6$
                                      $35= (3+3)*6-1$
                                      $36= (3+3)^1*6$
                                      $37= 1+(3+3)*6$
                                      $38= 33+6-1$
                                      $39= 33+6^1$
                                      $40= 1+33+6$
                                      $41= $
                                      $42= (1+3+3)*6$
                                      $43= 16+3^3$
                                      $44= (sqrt(6^3))*3^1$
                                      $45= 3*3*(6-1)$
                                      $46= $
                                      $47= $
                                      $48= ((3*3)-1)*6$
                                      $49= 16+33$
                                      $50= 63-13$








                                      share|improve this answer














                                      share|improve this answer



                                      share|improve this answer








                                      edited 6 mins ago

























                                      answered 34 mins ago









                                      MukyuuMukyuu

                                      340112




                                      340112






















                                          Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.










                                          draft saved

                                          draft discarded


















                                          Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.













                                          Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.












                                          Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.
















                                          Thanks for contributing an answer to Puzzling Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f78918%2fcreate-all-numbers-from-1-100-using-1-3-3-6%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          GameSpot

                                          日野市

                                          Tu-95轟炸機