注意:本页面含有Unihan新版用字:「𨨏𬭛」。有关字符可能會错误显示,詳见Unicode扩展汉字。






























































































































































铼   75Re





















































































































































.mw-parser-output .Yuansuzhouqibiao_alkali{background-color:#ff6666}.mw-parser-output .Yuansuzhouqibiao_alkali_predicted{background-color:#ffa1a1}.mw-parser-output .Yuansuzhouqibiao_alkali_earth{background-color:#ffdead}.mw-parser-output .Yuansuzhouqibiao_alkali_earth_predicted{background-color:#ffecd3}.mw-parser-output .Yuansuzhouqibiao_lanthanide{background-color:#ffbfff}.mw-parser-output .Yuansuzhouqibiao_actinide{background-color:#ff99cc}.mw-parser-output .Yuansuzhouqibiao_superactinides{background-color:#b5c8ff}.mw-parser-output .Yuansuzhouqibiao_superactinides_predicted{background-color:#d1ddff}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide{background-color:#a0e032}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide_predicted{background-color:#c6dd9d}.mw-parser-output .Yuansuzhouqibiao_transition{background-color:#ffc0c0}.mw-parser-output .Yuansuzhouqibiao_transition_predicted{background-color:#ffe2e2}.mw-parser-output .Yuansuzhouqibiao_post_transition{background-color:#cccccc}.mw-parser-output .Yuansuzhouqibiao_post_transition_predicted{background-color:#dfdfdf}.mw-parser-output .Yuansuzhouqibiao_metalloid{background-color:#cccc99}.mw-parser-output .Yuansuzhouqibiao_metalloid_predicted{background-color:#e2e2aa}.mw-parser-output .Yuansuzhouqibiao_diatomic{background-color:#e7ff8f}.mw-parser-output .Yuansuzhouqibiao_diatomic_predicted{background-color:#F3FFC7}.mw-parser-output .Yuansuzhouqibiao_polyatomic{background-color:#a1ffc3}.mw-parser-output .Yuansuzhouqibiao_polyatomic_predicted{background-color:#d0ffe1}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal{background-color:#a0ffa0}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal_predicted{background-color:#d3ffd3}.mw-parser-output .Yuansuzhouqibiao_halogen{background-color:#ffff99}.mw-parser-output .Yuansuzhouqibiao_halogen_predicted{background-color:#ffffd6}.mw-parser-output .Yuansuzhouqibiao_noble_gas{background-color:#c0ffff}.mw-parser-output .Yuansuzhouqibiao_noble_gas_predicted{background-color:#ddffff}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom_predicted{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_no_electron{background-color:#d0d0d0}.mw-parser-output .Yuansuzhouqibiao_s_block{background-color:#ff6699}.mw-parser-output .Yuansuzhouqibiao_s_block_predicted{background-color:#FBD}.mw-parser-output .Yuansuzhouqibiao_p_block{background-color:#99ccff}.mw-parser-output .Yuansuzhouqibiao_p_block_predicted{background-color:#CEF}.mw-parser-output .Yuansuzhouqibiao_d_block{background-color:#ccff99}.mw-parser-output .Yuansuzhouqibiao_d_block_predicted{background-color:#DFC}.mw-parser-output .Yuansuzhouqibiao_ds_block{background-color:#90ffb0}.mw-parser-output .Yuansuzhouqibiao_ds_block_predicted{background-color:#C7FFD7}.mw-parser-output .Yuansuzhouqibiao_f_block{background-color:#66ffcc}.mw-parser-output .Yuansuzhouqibiao_f_block_predicted{background-color:#BFE}.mw-parser-output .Yuansuzhouqibiao_g_block{background-color:#ffcc66}.mw-parser-output .Yuansuzhouqibiao_g_block_predicted{background-color:#FDA}.mw-parser-output .Yuansuzhouqibiao_h_block{background-color:#F0908C}.mw-parser-output .Yuansuzhouqibiao_h_block_predicted{background-color:#F0B6B4}.mw-parser-output .Yuansuzhouqibiao_unknown{background-color:#e8e8e8}.mw-parser-output .Yuansuzhouqibiao_error_type{background-color:#000000}.mw-parser-output .Yuansuzhouqibiao_null{background-color:inherit}.mw-parser-output .Yuansuzhouqibiao_maybe_not_exist{background-color:white}.mw-parser-output .Yuansuzhouqibiao_none_type{background-color:#c0c0c0}.mw-parser-output .Yuansuzhouqibiao_gas{color:green}.mw-parser-output .Yuansuzhouqibiao_liquid{color:blue}.mw-parser-output .Yuansuzhouqibiao_solid{color:black;font-weight:bold}.mw-parser-output .Yuansuzhouqibiao_unknow_phase{color:grey}
氫(非金屬)



氦(惰性氣體)


鋰(鹼金屬)


鈹(鹼土金屬)



硼(類金屬)


碳(非金屬)


氮(非金屬)


氧(非金屬)


氟(鹵素)


氖(惰性氣體)


鈉(鹼金屬)


鎂(鹼土金屬)



鋁(貧金屬)


矽(類金屬)


磷(非金屬)


硫(非金屬)


氯(鹵素)


氬(惰性氣體)


鉀(鹼金屬)


鈣(鹼土金屬)



鈧(過渡金屬)


鈦(過渡金屬)


釩(過渡金屬)


鉻(過渡金屬)


錳(過渡金屬)


鐵(過渡金屬)


鈷(過渡金屬)


鎳(過渡金屬)


銅(過渡金屬)


鋅(過渡金屬)


鎵(貧金屬)


鍺(類金屬)


砷(類金屬)


硒(非金屬)


溴(鹵素)


氪(惰性氣體)


銣(鹼金屬)


鍶(鹼土金屬)




釔(過渡金屬)


鋯(過渡金屬)


鈮(過渡金屬)


鉬(過渡金屬)


鎝(過渡金屬)


釕(過渡金屬)


銠(過渡金屬)


鈀(過渡金屬)


銀(過渡金屬)


鎘(過渡金屬)


銦(貧金屬)


錫(貧金屬)


銻(類金屬)


碲(類金屬)


碘(鹵素)


氙(惰性氣體)


銫(鹼金屬)


鋇(鹼土金屬)


鑭(鑭系元素)


鈰(鑭系元素)


鐠(鑭系元素)


釹(鑭系元素)


鉕(鑭系元素)


釤(鑭系元素)


銪(鑭系元素)


釓(鑭系元素)


鋱(鑭系元素)


鏑(鑭系元素)


鈥(鑭系元素)


鉺(鑭系元素)


銩(鑭系元素)


鐿(鑭系元素)


鎦(鑭系元素)


鉿(過渡金屬)


鉭(過渡金屬)


鎢(過渡金屬)


錸(過渡金屬)


鋨(過渡金屬)


銥(過渡金屬)


鉑(過渡金屬)


金(過渡金屬)


汞(過渡金屬)


鉈(貧金屬)


鉛(貧金屬)


鉍(貧金屬)


釙(貧金屬)


砈(類金屬)


氡(惰性氣體)


鍅(鹼金屬)


鐳(鹼土金屬)


錒(錒系元素)


釷(錒系元素)


鏷(錒系元素)


鈾(錒系元素)


錼(錒系元素)


鈽(錒系元素)


鋂(錒系元素)


鋦(錒系元素)


鉳(錒系元素)


鉲(錒系元素)


鑀(錒系元素)


鐨(錒系元素)


鍆(錒系元素)


鍩(錒系元素)


鐒(錒系元素)


鑪(過渡金屬)


𨧀(過渡金屬)


𨭎(過渡金屬)


𨨏(過渡金屬)


𨭆(過渡金屬)


䥑(預測為過渡金屬)


鐽(預測為過渡金屬)


錀(預測為過渡金屬)


鎶(過渡金屬)


鉨(預測為貧金屬)


鈇(貧金屬)


鏌(預測為貧金屬)


鉝(預測為貧金屬)


Ts(預測為鹵素)


Og(預測為惰性氣體)







𬭛

鎢 ← → 鋨


外觀

銀白色

概況
名稱·符號·序數

铼(Rhenium)·Re·75
元素類別
過渡金屬

族·週期·區

7 ·6·d
標準原子質量
186.207
電子排布

[Xe] 4f14 5d5 6s2
2, 8, 18, 32, 13, 2


铼的电子層(2, 8, 18, 32, 13, 2)

歷史
發現
小川正孝(1908年)
分離
小川正孝(1908年)
命名
沃爾特·諾達克、伊達·諾達克、奧托·伯格(1922年)
物理性質
物態
固體
密度
(接近室温)
21.02 g·cm−3

熔點時液體密度

18.9 g·cm−3
熔點
3459 K,3186 °C,5767 °F
沸點
5869 K,5596 °C,10105 °F
熔化熱
60.43 kJ·mol−1
汽化熱
704 kJ·mol−1
比熱容
25.48 J·mol−1·K−1

蒸氣壓





















壓/Pa
1
10
100
1 k
10 k
100 k
溫/K
3303
3614
4009
4500
5127
5954

原子性質
氧化態
7, 6, 5, 4, 3, 2, 1, 0, -1
(微酸性氧化物)
電負性
1.9(鲍林标度)
電離能

第一:760 kJ·mol−1

第二:1260 kJ·mol−1

第三:2510 kJ·mol−1


(更多)
原子半徑
137 pm
共價半徑
151±7 pm
雜項
晶體結構
六方密堆積
磁序
順磁性[1]
電阻率
(20 °C)193 n Ω·m
熱導率
48.0 W·m−1·K−1
膨脹係數
6.2 µm/(m·K)

聲速(細棒)

(20 °C)4700 m·s−1
楊氏模量
463 GPa
剪切模量
178 GPa
體積模量
370 GPa
泊松比
0.30
莫氏硬度
7.0
維氏硬度
2450 MPa
布氏硬度
1320 MPa
CAS號 7440-15-5
最穩定同位素

主条目:铼的同位素

































同位素

丰度

半衰期 (t1/2)

衰變

方式

能量(MeV)

產物

185Re
37.4%

穩定,帶110個中子

187Re
62.6%
4.12×1010

α
1.653

183Ta

β
0.0026

187Os


是一種化學元素,元素符號為Re,原子序為75。錸是種銀白色的重金屬,在元素週期表中屬於第6週期過渡金屬。它是地球地殼中最稀有的元素之一,平均含量估值為十億分之一,同時也是熔點和沸點最高的元素之一。錸是鉬和銅提煉過程的副產品。其化學性質與錳和鍀相似,在化合物中的氧化態最低可達−3,最高可達+7。


科學家在1925年發現了錸元素,因此它成為了最後被發現的穩定元素。其名稱(Rhenium)取自歐洲的萊茵河。


鎳錸高溫合金可用於製造噴氣發動機的燃燒室、渦輪葉片及排氣噴嘴。這些合金最多含有6%的錸,這是錸最大的實際應用,其次就是作為化工產業中的催化劑。錸比鑽石更難取得,所以價格高昂,2011年8月平均每公斤售4,575美元(每金衡盎司142.30美元)。由於錸可應用在高效能噴射引擎及火箭引擎,所以在軍事戰略上十分重要。[2]




目录






  • 1 歷史


  • 2 性質


    • 2.1 同位素


    • 2.2 化合物


      • 2.2.1 鹵化物與鹵氧化物


      • 2.2.2 氧化物與硫化物


      • 2.2.3 其他化合物


      • 2.2.4 有機化合物


      • 2.2.5 九氫合錸酸鹽




    • 2.3 存量




  • 3 生產


  • 4 應用


    • 4.1 合金


    • 4.2 催化劑


    • 4.3 其他用途




  • 5 安全


  • 6 參考資料


  • 7 外部連結





歷史


錸(Rhenium)的名稱源自拉丁文Rhenus,意為萊茵河。[3]錸是擁有穩定同位素的元素中最後一個發現的(之後在自然界發現的其他元素都是不具有穩定同位素的放射性元素,如鎿和鈈等)。[4]德米特里·門捷列夫在發佈元素週期表時,就預測了這一元素的存在。英國物理學家亨利·莫塞萊在1914年推算了有關該元素的一些數據。[5]德國的沃爾特·諾達克(Walter Noddack)、伊達·諾達克、奧托·伯格(Otto Berg)在1925年表示在鉑礦和鈮鐵礦中探測到了此元素。他們後來也在硅鈹釔礦和輝鉬礦內發現了錸。[6]1928年,他們在660公斤輝鉬礦中提取出了1克錸元素。[7]估計在1968年美國75%的錸金屬都用在科研以及難熔金屬合金的研製當中。幾年之後,高溫合金才得到廣泛使用。[8][9]


1908年,日本化學家小川正孝日语小川正孝宣佈發現了第43號元素,並將其命名為「Nipponium」(Np),以紀念其本國日本(Nippon)。然而,後來的分析則指出,他所發現的是75號元素,而非43(即鍀)。[10]Np在今天是第93号元素錼的化學符號,得名於海王星(Neptune),与「Nipponium」的缩写正好相同。



性質


錸是一種銀白色金屬,其熔點在所有元素中是繼鎢和碳之後第三高的,沸點則居首位。其密度在元素中排第四位,前三位分別為鉑、銥和鋨。錸具六方密排晶體結構,晶格常數為a = 276.1 pm和c = 445.6 pm。[11]


商業用的錸一般呈粉末狀,可在真空或氫氣中經壓制或燒結製成高密度固體,其密度為金屬態的90%以上。錸金屬在退火時延展性很高,可彎曲和捲起。[12]錸﹣鉬合金在10 K時是超導體,鎢﹣錸合金的超導溫度則在4至8 K。[13]錸金屬在1.697 ± 0.006 K時成為超導體。[14][15]


錸金屬塊在標準溫度和壓力下能抵抗鹼、硫酸、鹽酸、稀硝酸(非濃硝酸)以及王水。[16]



同位素



錸只有一種穩定同位素錸-185,存量亦極低。自然產生的錸當中有37.4%的185Re以及62.6%的放射性187Re。後者的半衰期長達1010年。錸原子的電荷狀態可影響這一壽命。[17][18]187Re的β衰變可用於錸鋨定年法,以測量礦石的年齡。這一β衰變的能量為2.6 keV,是衰變能量最低的放射性核素之一。錸-186m是壽命最長的同核異構體之一,半衰期長達20萬年左右。其他已知放射性錸同位素還有25種。[19]



化合物



錸在化合物中的氧化態可以在−3至+7之間,−2除外。+7、+6、+4和+2氧化態最為常見。[20]商業用錸一般以高錸酸鹽出售,如白色水溶的高錸酸鈉和高錸酸銨等。[21]



鹵化物與鹵氧化物


最常見的氯化錸有ReCl6、ReCl5、ReCl4和ReCl3[22]這些化合物的結構一般含有錸﹣錸鍵,這在+7態以下十分常見。[Re2Cl8]2-鹽中含有四重金屬﹣金屬鍵。氯化錸的最高氧化態可以是+6,而七氟化錸則是各種氟化錸中氧化態最高的。錸還擁有溴化物和碘化物。[20]


錸的化學性質與鎢和鉬相似,因此可以形成各種鹵氧化物,包括ReOCl4和ReO3Cl等。[20]



氧化物與硫化物




高錸酸的結構特殊


七氧化二錸(Re2O7)無色,具揮發性,是最常見的氧化錸。其分子結構與大部份金屬氧化物不同。ReO3具不完整鈣鈦礦結構。其他氧化物還包括Re2O5、ReO2及Re2O3[22]錸的硫化物有二硫化錸(ReS2)和七硫化二铼(Re2S7)。錸礦物最早是在庫德里亞維火山(Kudriavy)上被發現的,其主要成份就是二硫化錸。高錸酸鹽可經氫硫化銨轉換為四硫代高錸酸鹽。[23]



其他化合物


二硼化錸(ReB2)的硬度極高,與碳化鎢、碳化硅、二硼化鈦和二硼化鋯相近。[24]



有機化合物


有機錸化學中最常用的初始化合物是十羰基二錸。鈉汞齊可將它還原成Na[Re(CO)5],後者的錸氧化態為−1。[25]溴可把十羰基二錸氧化成五羰基溴化錸:[26]


Re2(CO)10 + Br2 → 2 Re(CO)5Br

鋅和乙酸可再將其還原為五羰基氫錸:[27]


Re(CO)5Br + Zn + HOAc → Re(CO)5H + ZnBr(OAc)

三氧化甲基錸(CH3ReO3,縮寫MTO)是一種揮發性無色固體,可作為某些化學反應的催化劑。該化合物有多種合成途徑,最常見的是使Re2O7與四甲基錫反應:


Re2O7 + (CH3)4Sn → CH3ReO3 + (CH3)3SnOReO3

也存在對應的烷基和芳基化合物。MTO可催化過氧化氫氧化反應。末端炔烴會產生對應的酸或脂,內在炔烴產生二酮類,而烯烴則產生環氧化合物。MTO還能催化醛和重氮烷烴至烯烴的轉換反應。[28]



九氫合錸酸鹽


九氫合錸酸鹽是一種特殊的錸化合物。九氫合錸酸負離子(ReH2−
9
)原先被認為是錸負離子Re[29]該離子中錸的氧化態為+7。[20]



存量




輝鉬礦


錸是地球地殼中最稀有的元素之一,平均含量為十億分之一;[22]某些文獻記載的錸含量為十億分之0.5。地球地殼元素豐度從高至低排列,則錸居第77位。[30]自然中很可能沒有純態的錸金屬,但目前尚無定論。輝鉬礦主要由二硫化鉬組成,是錸的主要商業開採來源。雖然輝鉬礦的錸含量一般約為0.2%,[22]但單一輝鉬礦樣本中的錸含量可高達1.88%。[31]智利擁有全球最大的錸礦藏(夾雜在銅礦藏中),截止2005年是世界最大的錸出產國。[32]1994年,科學家在俄羅斯千島羣島之一擇捉島上的庫德里亞維火山(Kudriavy)上首次發現錸礦物。這種礦物在火山噴氣孔凝聚形成,成份主要為二硫化錸。[33]庫德里亞維山每年主要以二硫化錸的形式噴出20至60公斤錸。[34][35]錸礦(rheniite)十分罕有,收藏價格很高。[36]



生產




高錸酸銨


在硫化銅礦石的提煉過程中,錸可以從含有鉬元素的焙燒煙氣中提取出來的。鉬礦石含有0.001%至0.2%的錸元素。[22][31]從煙氣物質中可用水淋洗出七氧化二錸和高錸酸,再用氯化鉀或氯化銨使其沉澱為高錸酸鹽,最後以重結晶方法進行純化。[22]錸的全球年產量在40至50噸之間,主要產國有智利、美國、秘魯和波蘭。[37]另外,鉑﹣錸催化劑和某些錸合金的回收過程每年可產出10噸錸。每公斤錸價格從2003至2006年的1千至2千美元迅速升至2008年2月的1萬美元以上。[38][39]要製成錸金屬,需在高溫下用氫氣還原高錸酸銨:[21]


2 NH4ReO4 + 7 H2 → 2 Re + 8 H2O + 2 NH3


應用





F100渦輪扇發動機使用第二代含錸高溫合金


全球錸產量的70%都用於製造噴射引擎的高溫合金部件。[40]錸的另一主要應用是在鉑-錸催化劑,可用於生產無鉛、高辛烷的汽油。[41]



合金


加入錸會提升鎳高溫合金的蠕變強度。錸合金一般含有3%至6%的錸。[42]第二代合金的含錸量為3%,曾用在F-16和F-15戰機引擎中。第三代單晶體合金的含錸量則有6%,曾用在F-22和F-35引擎中。[41][43]錸高溫合金還用於工業燃氣輪機。高溫合金在加入錸後會形成拓撲密排相(TCP),因此其微結構會變得不穩定。第四代和第五代高溫合金使用釕以避免這一現象。[44][45][46][47]




仍使用3%錸合金的CFM56噴射引擎


2006年的錸消耗量分別為:通用電氣28%,勞斯萊斯股份有限公司28%,普惠公司12%,皆用於生產高溫合金。另有14%用作催化劑,18%作其他用途。[40]由於軍用噴射引擎需求持續增加,因此有必要研發含錸量更低的高溫合金,以維持供應。比如,新型CFM56高壓渦輪(HPT)葉片使用的合金含1.5%的錸,以取代含錸量為3%的合金。[48][49]


錸可增強鎢的物理性質。鎢﹣錸合金在低溫下可塑性更高,易於製造、塑形,且在高溫下的穩定性也得以提高。這一變化會隨錸的含量而增加,所以鎢﹣錸合金含有27%的錸,這也就是錸在鎢中的溶解極限。[50]X射線源是鎢﹣錸合金的其中一個應用。鎢和錸的熔點和原子量都很高,有助於抵抗持續的電子撞擊。[51]這種合金還用作熱電偶,可測量最高2200 °C的溫度。[52]


錸在高溫下十分穩定,蒸氣壓低,耐磨損,且能夠抵禦電弧腐蝕,所以是很好的自動清洗電觸頭材料。開關時的電火花會對觸頭進行氧化耗損。不過,七氧化二錸(Re2O7)在360 °C左右昇華,所以會在放電過程中移去。[40]


錸與鉭和鎢一樣具有高熔點和低蒸氣壓,所以用這些材料製成的燈絲在氧氣環境下穩定性較高。[53]這類燈絲被廣泛用於質譜儀、電離壓力計[54]及照相閃光燈等。[55]



催化劑


錸﹣鉑合金是催化重整過程中的一種催化劑。這種石油加工過程能夠提高石腦油的辛烷值。用於催化重整的催化劑當中,30%含有錸。[56]在礬土(氧化鋁)表面塗上錸,可作為烯烴複分解反應的催化劑。[57]含錸催化劑可抗禦氮、硫和磷的催化劑中毒現象,因此被用在某些氫化反應中。[12][58][59]



其他用途


188Re和186Re同位素具有放射性,可用於治療肝癌。兩者在身體組織的穿透深度相近,分別為11毫米和5毫米,但186Re的半衰期較長(90小時,相比17小時),所以更為優勝。[60][61]


188Re還被用於一種新型胰腺癌療法:用李斯特菌攜帶這一錸放射性同位素進入身體,針對性地對抗癌組織。[62]


錸在元素週期表中位於鍀之下,所以根據週期規律,兩者的性質相近。含錸化合物可以很容易地轉換為對應的鍀化合物。這在放射性藥物學中非常有用,因為鍀(特別是醫學常用的鍀-99m同位素)價格高,半衰期短,所以很難直接使用。[60][63]



安全


由於用量一般很少,所以人們對錸以及錸化合物的毒性所知甚少。鹵化錸和高錸酸鹽等可溶鹽的有害性可能來自錸或者其他所含元素。[64]科學家只對極少數錸化合物作過毒性測試,包括高錸酸鉀和三氯化錸。試驗以老鼠作為對象,測得高錸酸鉀的7天LD50值為2800 mg/kg,三氯化錸的LD50值為280 mg/kg。[65]



參考資料





  1. ^ [1] 页面存档备份,存于互联网档案馆, in Handbook of Chemistry and Physics 81st edition, CRC press.


  2. ^ Rhenium. MetalPrices.com. [2012-02-02]. 


  3. ^ Tilgner, Hans Georg. Forschen Suche und Sucht. Books on Demand. 2000. ISBN 978-3-89811-272-7 (德语). 


  4. ^ Rhenium: Statistics and Information. Minerals Information. United States Geological Survey. 2011 [2011-05-25] (英语). 


  5. ^ Moseley, Henry. The High-Frequency Spectra of the Elements, Part II. Philosophical Magazine. 1914, 27 (160): 703–713. doi:10.1080/14786440408635141. (原始内容存档于2010-01-22) (英语). 


  6. ^ Noddack, W.; Tacke, I.; Berg, O. Die Ekamangane. Naturwissenschaften. 1925, 13 (26): 567–574. Bibcode:1925NW.....13..567.. doi:10.1007/BF01558746 (德语). 


  7. ^ Noddack, W.; Noddack, I. Die Herstellung von einem Gram Rhenium. Zeitschrift für anorganische und allgemeine Chemie. 1929, 183 (1): 353–375. doi:10.1002/zaac.19291830126 (德语). 


  8. ^ Committee On Technical Aspects Of Critical And Strategic Material, National Research Council (U.S.). Trends in usage of rhenium: Report. 1968: 4–5 (英语). 


  9. ^ Savitskiĭ, Evgeniĭ Mikhaĭlovich; Tulkina, Mariia Aronovna; Povarova, Kira Borisovna. Rhenium alloys. 1970 (英语). 


  10. ^ Yoshihara, H. K. Discovery of a new element 'nipponiumʼ: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa. Spectrochimica Acta Part B Atomic Spectroscopy. 2004, 59 (8): 1305–1310. Bibcode:2004AcSpe..59.1305Y. doi:10.1016/j.sab.2003.12.027 (英语). 


  11. ^ Liu, L.G.; Takahashi, T.; Bassett, W. A. Effect of pressure and temperature on lattice parameters of rhenium. Journal of Physics and Chemistry of Solids. 1970, 31 (6): 1345–1351. Bibcode:1970JPCS...31.1345L. doi:10.1016/0022-3697(70)90138-1 (英语). 


  12. ^ 12.012.1 Hammond, C. R. The Elements. Handbook of Chemistry and Physics 81st ed. CRC press. 2004. ISBN 0-8493-0485-7.  引文格式1维护:冗余文本 (link)


  13. ^ Neshpor, V. S.; Novikov; Noskin; Shalyt; Novikov, V. I.; Noskin, V. A.; Shalyt, S. S. Superconductivity of Some Alloys of the Tungsten-rhenium-carbon System. Soviet Physics JETP. 1968, 27: 13. Bibcode:1968JETP...27...13N (英语).  引文使用过时参数coauthors (帮助)


  14. ^ Haynes, William M. (编). CRC Handbook of Chemistry and Physics 92nd. CRC Press. 2011: 12.60. ISBN 1439855110 (英语). 


  15. ^ Daunt, J. G.; Lerner, E., The Properties of Superconducting Mo-Re Alloys, Defense Technical Information Center (英语) 


  16. ^ Rhenium. EPI Metals. [2014-12-28] (英语). 


  17. ^ Johnson, Bill. How to Change Nuclear Decay Rates. math.ucr.edu. 1993 [2009-02-21] (英语). 


  18. ^ Bosch, F.; Faestermann, T.; Friese, J.; 等. Observation of bound-state β decay of fully ionized 187Re: 187Re-187Os Cosmochronometry. Physical Review Letters. 1996, 77 (26): 5190–5193. Bibcode:1996PhRvL..77.5190B. PMID 10062738. doi:10.1103/PhysRevLett.77.5190 (英语). 


  19. ^ Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A.H. The NUBASE Evaluation of Nuclear and Decay Properties. Nuclear Physics A (Atomic Mass Data Center). 2003, 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001 (英语). 


  20. ^ 20.020.120.220.3 Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils;. Rhenium. Lehrbuch der Anorganischen Chemie 91–100. Walter de Gruyter. 1985: 1118–1123. ISBN 3-11-007511-3 (德语).  引文使用过时参数coauthors (帮助)


  21. ^ 21.021.1 Glemser, O. (1963) "Ammonium Perrhenate" in Handbook of Preparative Inorganic Chemistry, 2nd ed., G. Brauer (ed.), Academic Press, NY., Vol. 1, pp. 1476–85.(英文)


  22. ^ 22.022.122.222.322.422.5 Greenwood, Norman N.; Earnshaw, Alan., Chemistry of the Elements 2nd, Oxford: Butterworth-Heinemann, 1997, ISBN 0080379419 


  23. ^ Goodman, J. T.; Rauchfuss, T. B. Tetraethylammonium-tetrathioperrhenate [Et4N] [ReS4]. Inorganic Syntheses. 2002, 33: 107–110. doi:10.1002/0471224502.ch2 (英语). 


  24. ^ Qin, Jiaqian; He, Duanwei; Wang, Jianghua; Fang, Leiming; Lei, Li; Li, Yongjun; Hu, Juan; Kou, Zili; Bi, Yan. Is Rhenium Diboride a Superhard Material?. Advanced Materials. 2008, 20 (24): 4780–4783. doi:10.1002/adma.200801471 (英语).  引文格式1维护:显示-作者 (link)


  25. ^ Breimair, Josef; Steimann, Manfred; Wagner, Barbara; Beck, Wolfgang. Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe. Chemische Berichte. 1990, 123: 7. doi:10.1002/cber.19901230103 (英语). 


  26. ^ Schmidt, Steven P.; Trogler, William C.; Basolo, Fred. Pentacarbonylrhenium Halides. Inorganic Syntheses. Inorganic Syntheses. 1990, 28: 154–159. ISBN 978-0-470-13259-3. doi:10.1002/9780470132593.ch42 (英语). 


  27. ^ Michael A. Urbancic, John R. Shapley. Pentacarbonylhydridorhenium. Inorganic Syntheses. Inorganic Syntheses. 1990, 28: 165–168. ISBN 978-0-470-13259-3. doi:10.1002/9780470132593.ch43 (英语). 


  28. ^ Hudson, A. (2002) “Methyltrioxorhenium” in Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons: New York, ISBN 978-0-470-84289-8, doi:10.1002/047084289X.(英文)


  29. ^ Floss, J.G.; Grosse, A.V. Alkali and alkaline earth rhenohydrides. Journal of Inorganic and Nuclear Chemistry (Elsevier BV). 1960, 16 (1-2): 36–43. ISSN 0022-1902. doi:10.1016/0022-1902(60)80083-8. 


  30. ^ Emsley, John. Rhenium. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. 2001: 358–360. ISBN 0-19-850340-7 (英语). 


  31. ^ 31.031.1 Rouschias, George. Recent advances in the chemistry of rhenium. Chemical Reviews. 1974, 74 (5): 531. doi:10.1021/cr60291a002 (英语). 


  32. ^ Anderson, Steve T. 2005 Minerals Yearbook: Chile (PDF). United States Geological Survey. [2008-10-26] (英语). 


  33. ^ Korzhinsky, M.A.; Tkachenko, S. I.; Shmulovich, K. I.; Taran Y. A.; Steinberg, G. S. Discovery of a pure rhenium mineral at Kudriavy volcano. Nature. 2004-05-05, 369 (6475): 51–52. Bibcode:1994Natur.369...51K. doi:10.1038/369051a0 (英语). 


  34. ^ Kremenetsky, A. A.; Chaplygin, I. V. Concentration of rhenium and other rare metals in gases of the Kudryavy Volcano (Iturup Island, Kurile Islands). Doklady Earth Sciences. 2010, 430: 114. Bibcode:2010DokES.430..114K. doi:10.1134/S1028334X10010253 (英语). 


  35. ^ Tessalina, S; Yudovskaya, M; Chaplygin, I; Birck, J; Capmas, F. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano. Geochimica et Cosmochimica Acta. 2008, 72 (3): 889. Bibcode:2008GeCoA..72..889T. doi:10.1016/j.gca.2007.11.015 (英语). 


  36. ^ The Mineral Rheniite. Amethyst Galleries (英语). 


  37. ^ Magyar, Michael J. Rhenium (PDF). Mineral Commodity Summaries. U.S. Geological Survey. January 2012 [2013-09-04] (英语). 


  38. ^ MinorMetal prices. minormetals.com. [2008-02-17] (英语). 


  39. ^ Harvey, Jan. Analysis: Super hot metal rhenium may reach "platinum prices". Reuters India. 2008-07-10 [2008-10-26] (英语). 


  40. ^ 40.040.140.2 Naumov, A. V. Rhythms of rhenium. Russian Journal of Non-Ferrous Metals. 2007, 48 (6): 418–423. doi:10.3103/S1067821207060089 (英语). 


  41. ^ 41.041.1 Magyar, Michael J. 2009 Mineral Yearbook: Rhenium (PDF). United States Geological Survey. April 2011 (英语). 


  42. ^ Bhadeshia, H. K. D. H. Nickel Based Superalloys. University of Cambridge. [2008-10-17]. (原始内容存档于2006-08-25) (英语). 


  43. ^ Cantor, B.; Grant, Patrick Assender Hazel. Aerospace Materials: An Oxford-Kobe Materials Text. CRC Press. 2001: 82–83. ISBN 978-0-7503-0742-0 (英语). 


  44. ^ Bondarenko, Yu. A.; Kablov, E. N.; Surova, V. A.; Echin, A. B. Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy. Metal Science and Heat Treatment. 2006, 48 (7–8): 360. doi:10.1007/s11041-006-0099-6. 


  45. ^ Fourth generation nickel base single crystal superalloy (PDF). 


  46. ^ Koizumi, Yutaka; 等. Development of a Next-Generation Ni-base Single Crystal Superalloy (PDF). Proceedings of the International Gas Turbine Congress, Tokyo November 2–7, 2003. 


  47. ^ Walston, S.; Cetel, A.; MacKay, R.; O'Hara, K.; Duhl, D.; Dreshfield, R. Joint Development of a Fourth Generation Single Crystal Superalloy (PDF). (原始内容 (PDF)存档于2006-10-15). 


  48. ^ Fink, Paul J.; Miller, Joshua L.; Konitzer, Douglas G. Rhenium reduction—alloy design using an economically strategic element. JOM. 2010, 62: 55. Bibcode:2010JOM....62a..55F. doi:10.1007/s11837-010-0012-z (英语). 


  49. ^ Konitzer, Douglas G. Design in an Era of Constrained Resources. 2010年9月 [2010-10-12]. (原始内容存档于2011-07-25) (英语). 


  50. ^ Lassner, Erik; Schubert, Wolf-Dieter. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. 1999: 256. ISBN 978-0-306-45053-2 (英语). 


  51. ^ Cherry, Pam; Duxbury, Angela. Practical radiotherapy physics and equipment. Cambridge University Press. 1998: 55. ISBN 978-1-900151-06-1 (英语). 


  52. ^ Asamoto, R.; Novak, P. E. Tungsten-Rhenium Thermocouples for Use at High Temperatures. Review of Scientific Instruments. 1968, 39 (8): 1233. Bibcode:1968RScI...39.1233A. doi:10.1063/1.1683642 (英语). 


  53. ^ Blackburn, Paul E. The Vapor Pressure of Rhenium. The Journal of Physical Chemistry. 1966, 70: 311–312. doi:10.1021/j100873a513 (英语). 


  54. ^ Earle, G. D.; Medikonduri, R.; Rajagopal, N.; Narayanan, V.; Roddy, P. A. Tungsten-Rhenium Filament Lifetime Variability in Low Pressure Oxygen Environments. IEEE Transactions on Plasma Science. 2005, 33 (5): 1736–1737. Bibcode:2005ITPS...33.1736E. doi:10.1109/TPS.2005.856413 (英语). 


  55. ^ Ede, Andrew. The chemical element: a historical perspective. Greenwood Publishing Group. 2006. ISBN 978-0-313-33304-0 (英语). 


  56. ^ Ryashentseva, Margarita A. Rhenium-containing catalysts in reactions of organic compounds. Russian Chemical Reviews. 1998, 67 (2): 157–177. Bibcode:1998RuCRv..67..157R. doi:10.1070/RC1998v067n02ABEH000390 (英语). 


  57. ^ Mol, Johannes C. Olefin metathesis over supported rhenium oxide catalysts. Catalysis Today. 1999, 51 (2): 289–299. doi:10.1016/S0920-5861(99)00051-6 (英语). 


  58. ^ Angelidis, T. N.; Rosopoulou, D. Tzitzios V. Selective Rhenium Recovery from Spent Reforming Catalysts. Ind. Eng. Chem. Res. 1999, 38 (5): 1830–1836. doi:10.1021/ie9806242 (英语). 


  59. ^ Burch, Robert. The Oxidation State of Rhenium and Its Role in Platinum-Rhenium (PDF). Platinum Metals Review. 1978, 22 (2): 57–60 (英语). 


  60. ^ 60.060.1 Dilworth, Jonathan R.; Parrott, Suzanne J. The biomedical chemistry of technetium and rhenium. Chemical Society Reviews. 1998, 27: 43–55. doi:10.1039/a827043z (英语). 


  61. ^ The Tungsten-188 and Rhenium-188 Generator Information. Oak Ridge National Laboratory. 2005 [2008-02-03]. (原始内容存档于2008-01-09) (英语). 


  62. ^ Baker, Monya. Radioactive bacteria attack cancer. Nature. 2013-04-22 (英语). 


  63. ^ Colton, R.; Peacock R. D. An outline of technetium chemistry. Quarterly Reviews Chemical Society. 1962, 16 (4): 299–315. doi:10.1039/QR9621600299 (英语).  引文使用过时参数coauthor (帮助)


  64. ^ Emsley, J. Rhenium. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. 2003: 358–361. ISBN 0-19-850340-7 (英语). 


  65. ^ Haley, Thomas J.; Cartwright, Frank D. Pharmacology and toxicology of potassium perrhenate and rhenium trichloride. Journal of Pharmaceutical Sciences. 1968, 57 (2): 321–323. PMID 5641681. doi:10.1002/jps.2600570218 (英语).  引文使用过时参数coauthor (帮助)




外部連結




  • Rhenium at The Periodic Table of Videos(諾丁漢大學)


  • Рений. Популярная библиотека химических элементов. [2013-08-17]. (原始内容存档于2013-08-18). 


  • MetalPrices.com is now part of Argus Metals. MetalPrices.com. [2013-08-17]. (原始内容存档于2013-08-18) (英语). 


  • Toma Group Rhenium and precious metals refining. Toma Group. [2013-08-17]. (原始内容存档于2013-08-18) (英语). 


  • Режиссер: Д. Семибратов. "Эффект рения" - HD (Effect of Rhenium) 2014г., документальный фильм - YouTube (俄语). 



















































































































































































Popular posts from this blog

GameSpot

connect to host localhost port 22: Connection refused

Getting a Wifi WPA2 wifi connection