Tikz/Pgf - Surf plot with smooth color transition












3















I am drawing a surf 3d plot in Tikz/Pgf using gnuplot. This surface need to be projected on a plane, which can be achieved by adding another surf plot.



The thing is that the transition between colors, in both surf plots actually is not very smooth, despite using



shader=interp


One possibility is to increase the number of samples however building becomes slow and I cannot exceed 75 samples.



An example code can be found right next



documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}


begin{document}

begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};

addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}

end{document}


and the result of this code is the following image



enter image description here



Any idea on how to make a smoother transition from color to color?










share|improve this question




















  • 1





    With pleasure! No problem!

    – Thanos
    5 hours ago
















3















I am drawing a surf 3d plot in Tikz/Pgf using gnuplot. This surface need to be projected on a plane, which can be achieved by adding another surf plot.



The thing is that the transition between colors, in both surf plots actually is not very smooth, despite using



shader=interp


One possibility is to increase the number of samples however building becomes slow and I cannot exceed 75 samples.



An example code can be found right next



documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}


begin{document}

begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};

addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}

end{document}


and the result of this code is the following image



enter image description here



Any idea on how to make a smoother transition from color to color?










share|improve this question




















  • 1





    With pleasure! No problem!

    – Thanos
    5 hours ago














3












3








3


1






I am drawing a surf 3d plot in Tikz/Pgf using gnuplot. This surface need to be projected on a plane, which can be achieved by adding another surf plot.



The thing is that the transition between colors, in both surf plots actually is not very smooth, despite using



shader=interp


One possibility is to increase the number of samples however building becomes slow and I cannot exceed 75 samples.



An example code can be found right next



documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}


begin{document}

begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};

addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}

end{document}


and the result of this code is the following image



enter image description here



Any idea on how to make a smoother transition from color to color?










share|improve this question
















I am drawing a surf 3d plot in Tikz/Pgf using gnuplot. This surface need to be projected on a plane, which can be achieved by adding another surf plot.



The thing is that the transition between colors, in both surf plots actually is not very smooth, despite using



shader=interp


One possibility is to increase the number of samples however building becomes slow and I cannot exceed 75 samples.



An example code can be found right next



documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}


begin{document}

begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};

addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}

end{document}


and the result of this code is the following image



enter image description here



Any idea on how to make a smoother transition from color to color?







tikz-pgf pgfplots 3d gnuplot smooth






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 5 hours ago







Thanos

















asked 10 hours ago









ThanosThanos

6,0751454107




6,0751454107








  • 1





    With pleasure! No problem!

    – Thanos
    5 hours ago














  • 1





    With pleasure! No problem!

    – Thanos
    5 hours ago








1




1





With pleasure! No problem!

– Thanos
5 hours ago





With pleasure! No problem!

– Thanos
5 hours ago










1 Answer
1






active

oldest

votes


















4














If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};

addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here



As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.



And here is a combination of a cartesian and a polar plot.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here






share|improve this answer


























  • Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

    – Thanos
    7 hours ago













  • @Thanos Yes, but I do not understand what you mean by "folding".

    – marmot
    7 hours ago











  • I mean the wiggles you mentioned in the side-effect.

    – Thanos
    7 hours ago











  • @Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

    – marmot
    7 hours ago











  • @ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

    – Thanos
    7 hours ago











Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476469%2ftikz-pgf-surf-plot-with-smooth-color-transition%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4














If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};

addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here



As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.



And here is a combination of a cartesian and a polar plot.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here






share|improve this answer


























  • Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

    – Thanos
    7 hours ago













  • @Thanos Yes, but I do not understand what you mean by "folding".

    – marmot
    7 hours ago











  • I mean the wiggles you mentioned in the side-effect.

    – Thanos
    7 hours ago











  • @Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

    – marmot
    7 hours ago











  • @ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

    – Thanos
    7 hours ago
















4














If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};

addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here



As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.



And here is a combination of a cartesian and a polar plot.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here






share|improve this answer


























  • Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

    – Thanos
    7 hours ago













  • @Thanos Yes, but I do not understand what you mean by "folding".

    – marmot
    7 hours ago











  • I mean the wiggles you mentioned in the side-effect.

    – Thanos
    7 hours ago











  • @Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

    – marmot
    7 hours ago











  • @ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

    – Thanos
    7 hours ago














4












4








4







If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};

addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here



As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.



And here is a combination of a cartesian and a polar plot.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here






share|improve this answer















If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};

addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here



As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.



And here is a combination of a cartesian and a polar plot.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};


end{axis}
end{tikzpicture}

end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited 7 hours ago

























answered 7 hours ago









marmotmarmot

103k4122233




103k4122233













  • Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

    – Thanos
    7 hours ago













  • @Thanos Yes, but I do not understand what you mean by "folding".

    – marmot
    7 hours ago











  • I mean the wiggles you mentioned in the side-effect.

    – Thanos
    7 hours ago











  • @Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

    – marmot
    7 hours ago











  • @ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

    – Thanos
    7 hours ago



















  • Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

    – Thanos
    7 hours ago













  • @Thanos Yes, but I do not understand what you mean by "folding".

    – marmot
    7 hours ago











  • I mean the wiggles you mentioned in the side-effect.

    – Thanos
    7 hours ago











  • @Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

    – marmot
    7 hours ago











  • @ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

    – Thanos
    7 hours ago

















Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

– Thanos
7 hours ago







Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?

– Thanos
7 hours ago















@Thanos Yes, but I do not understand what you mean by "folding".

– marmot
7 hours ago





@Thanos Yes, but I do not understand what you mean by "folding".

– marmot
7 hours ago













I mean the wiggles you mentioned in the side-effect.

– Thanos
7 hours ago





I mean the wiggles you mentioned in the side-effect.

– Thanos
7 hours ago













@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

– marmot
7 hours ago





@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?

– marmot
7 hours ago













@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

– Thanos
7 hours ago





@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.

– Thanos
7 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476469%2ftikz-pgf-surf-plot-with-smooth-color-transition%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

GameSpot

日野市

Tu-95轟炸機