Obtaining a matrix of complex values from associations giving the real and imaginary parts of each element?












5












$begingroup$


I have a list of associations keyed by real and imaginary numbers, like so:



matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},

{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},

{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},

{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}


Given this, I can write



testmatrix = Join[Values[matrix], 2]`


to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|> rather than the tuples?










share|improve this question











$endgroup$

















    5












    $begingroup$


    I have a list of associations keyed by real and imaginary numbers, like so:



    matrix = {
    {<|"r" -> 0.368252, "i" -> 0.0199587|>,
    <|"r" -> -0.461644, "i" -> 0.109868|>,
    <|"r" -> -0.216081, "i" -> 0.562557|>,
    <|"r" -> -0.479881, "i" -> -0.212978|>},

    {<|"r" -> 0.105028, "i" -> 0.632264|>,
    <|"r" -> 0.116589, "i" -> -0.490063|>,
    <|"r" -> 0.463378, "i" -> 0.231656|>,
    <|"r" -> -0.148665, "i" -> 0.212065|>},

    {<|"r" -> 0.463253, "i" -> 0.201161|>,
    <|"r" -> 0.460547, "i" -> 0.397829|>,
    <|"r" -> 0.222257, "i" -> 0.0129121|>,
    <|"r" -> 0.168641, "i" -> -0.544568|>},

    {<|"r" -> 0.255221, "i" -> -0.364687|>,
    <|"r" -> 0.191895, "i" -> -0.337437|>,
    <|"r" -> -0.12278, "i" -> 0.551195|>,
    <|"r" -> 0.560485, "i" -> 0.134702|>}
    }


    Given this, I can write



    testmatrix = Join[Values[matrix], 2]`


    to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|> rather than the tuples?










    share|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      I have a list of associations keyed by real and imaginary numbers, like so:



      matrix = {
      {<|"r" -> 0.368252, "i" -> 0.0199587|>,
      <|"r" -> -0.461644, "i" -> 0.109868|>,
      <|"r" -> -0.216081, "i" -> 0.562557|>,
      <|"r" -> -0.479881, "i" -> -0.212978|>},

      {<|"r" -> 0.105028, "i" -> 0.632264|>,
      <|"r" -> 0.116589, "i" -> -0.490063|>,
      <|"r" -> 0.463378, "i" -> 0.231656|>,
      <|"r" -> -0.148665, "i" -> 0.212065|>},

      {<|"r" -> 0.463253, "i" -> 0.201161|>,
      <|"r" -> 0.460547, "i" -> 0.397829|>,
      <|"r" -> 0.222257, "i" -> 0.0129121|>,
      <|"r" -> 0.168641, "i" -> -0.544568|>},

      {<|"r" -> 0.255221, "i" -> -0.364687|>,
      <|"r" -> 0.191895, "i" -> -0.337437|>,
      <|"r" -> -0.12278, "i" -> 0.551195|>,
      <|"r" -> 0.560485, "i" -> 0.134702|>}
      }


      Given this, I can write



      testmatrix = Join[Values[matrix], 2]`


      to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|> rather than the tuples?










      share|improve this question











      $endgroup$




      I have a list of associations keyed by real and imaginary numbers, like so:



      matrix = {
      {<|"r" -> 0.368252, "i" -> 0.0199587|>,
      <|"r" -> -0.461644, "i" -> 0.109868|>,
      <|"r" -> -0.216081, "i" -> 0.562557|>,
      <|"r" -> -0.479881, "i" -> -0.212978|>},

      {<|"r" -> 0.105028, "i" -> 0.632264|>,
      <|"r" -> 0.116589, "i" -> -0.490063|>,
      <|"r" -> 0.463378, "i" -> 0.231656|>,
      <|"r" -> -0.148665, "i" -> 0.212065|>},

      {<|"r" -> 0.463253, "i" -> 0.201161|>,
      <|"r" -> 0.460547, "i" -> 0.397829|>,
      <|"r" -> 0.222257, "i" -> 0.0129121|>,
      <|"r" -> 0.168641, "i" -> -0.544568|>},

      {<|"r" -> 0.255221, "i" -> -0.364687|>,
      <|"r" -> 0.191895, "i" -> -0.337437|>,
      <|"r" -> -0.12278, "i" -> 0.551195|>,
      <|"r" -> 0.560485, "i" -> 0.134702|>}
      }


      Given this, I can write



      testmatrix = Join[Values[matrix], 2]`


      to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|> rather than the tuples?







      matrix expression-manipulation associations






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 3 hours ago









      MarcoB

      36.6k556112




      36.6k556112










      asked 11 hours ago









      MKFMKF

      1588




      1588






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Apply[Complex, matrix, {2}]



          {{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},

          {0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},

          {0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},

          {0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}







          share|improve this answer









          $endgroup$













          • $begingroup$
            Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
            $endgroup$
            – Henrik Schumacher
            4 hours ago










          • $begingroup$
            The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
            $endgroup$
            – J. M. is computer-less
            3 hours ago



















          5












          $begingroup$

          matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]


          or



          Join[Values[matrix], 2].{1, I}





          share|improve this answer











          $endgroup$













          • $begingroup$
            Even better: Values[matrix].{1, I}, which preserves the matrix structure.
            $endgroup$
            – J. M. is computer-less
            3 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192530%2fobtaining-a-matrix-of-complex-values-from-associations-giving-the-real-and-imagi%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          Apply[Complex, matrix, {2}]



          {{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},

          {0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},

          {0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},

          {0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}







          share|improve this answer









          $endgroup$













          • $begingroup$
            Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
            $endgroup$
            – Henrik Schumacher
            4 hours ago










          • $begingroup$
            The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
            $endgroup$
            – J. M. is computer-less
            3 hours ago
















          6












          $begingroup$

          Apply[Complex, matrix, {2}]



          {{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},

          {0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},

          {0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},

          {0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}







          share|improve this answer









          $endgroup$













          • $begingroup$
            Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
            $endgroup$
            – Henrik Schumacher
            4 hours ago










          • $begingroup$
            The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
            $endgroup$
            – J. M. is computer-less
            3 hours ago














          6












          6








          6





          $begingroup$

          Apply[Complex, matrix, {2}]



          {{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},

          {0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},

          {0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},

          {0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}







          share|improve this answer









          $endgroup$



          Apply[Complex, matrix, {2}]



          {{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},

          {0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},

          {0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},

          {0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 6 hours ago









          kglrkglr

          186k10203422




          186k10203422












          • $begingroup$
            Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
            $endgroup$
            – Henrik Schumacher
            4 hours ago










          • $begingroup$
            The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
            $endgroup$
            – J. M. is computer-less
            3 hours ago


















          • $begingroup$
            Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
            $endgroup$
            – Henrik Schumacher
            4 hours ago










          • $begingroup$
            The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
            $endgroup$
            – J. M. is computer-less
            3 hours ago
















          $begingroup$
          Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
          $endgroup$
          – Henrik Schumacher
          4 hours ago




          $begingroup$
          Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
          $endgroup$
          – Henrik Schumacher
          4 hours ago












          $begingroup$
          The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
          $endgroup$
          – J. M. is computer-less
          3 hours ago




          $begingroup$
          The Apply[Complex] method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}.
          $endgroup$
          – J. M. is computer-less
          3 hours ago











          5












          $begingroup$

          matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]


          or



          Join[Values[matrix], 2].{1, I}





          share|improve this answer











          $endgroup$













          • $begingroup$
            Even better: Values[matrix].{1, I}, which preserves the matrix structure.
            $endgroup$
            – J. M. is computer-less
            3 hours ago
















          5












          $begingroup$

          matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]


          or



          Join[Values[matrix], 2].{1, I}





          share|improve this answer











          $endgroup$













          • $begingroup$
            Even better: Values[matrix].{1, I}, which preserves the matrix structure.
            $endgroup$
            – J. M. is computer-less
            3 hours ago














          5












          5








          5





          $begingroup$

          matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]


          or



          Join[Values[matrix], 2].{1, I}





          share|improve this answer











          $endgroup$



          matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]


          or



          Join[Values[matrix], 2].{1, I}






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 4 hours ago

























          answered 11 hours ago









          Henrik SchumacherHenrik Schumacher

          55.3k576154




          55.3k576154












          • $begingroup$
            Even better: Values[matrix].{1, I}, which preserves the matrix structure.
            $endgroup$
            – J. M. is computer-less
            3 hours ago


















          • $begingroup$
            Even better: Values[matrix].{1, I}, which preserves the matrix structure.
            $endgroup$
            – J. M. is computer-less
            3 hours ago
















          $begingroup$
          Even better: Values[matrix].{1, I}, which preserves the matrix structure.
          $endgroup$
          – J. M. is computer-less
          3 hours ago




          $begingroup$
          Even better: Values[matrix].{1, I}, which preserves the matrix structure.
          $endgroup$
          – J. M. is computer-less
          3 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192530%2fobtaining-a-matrix-of-complex-values-from-associations-giving-the-real-and-imagi%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          GameSpot

          日野市

          Tu-95轟炸機