Obtaining a matrix of complex values from associations giving the real and imaginary parts of each element?
$begingroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
$endgroup$
add a comment |
$begingroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
$endgroup$
add a comment |
$begingroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
$endgroup$
I have a list of associations keyed by real and imaginary numbers, like so:
matrix = {
{<|"r" -> 0.368252, "i" -> 0.0199587|>,
<|"r" -> -0.461644, "i" -> 0.109868|>,
<|"r" -> -0.216081, "i" -> 0.562557|>,
<|"r" -> -0.479881, "i" -> -0.212978|>},
{<|"r" -> 0.105028, "i" -> 0.632264|>,
<|"r" -> 0.116589, "i" -> -0.490063|>,
<|"r" -> 0.463378, "i" -> 0.231656|>,
<|"r" -> -0.148665, "i" -> 0.212065|>},
{<|"r" -> 0.463253, "i" -> 0.201161|>,
<|"r" -> 0.460547, "i" -> 0.397829|>,
<|"r" -> 0.222257, "i" -> 0.0129121|>,
<|"r" -> 0.168641, "i" -> -0.544568|>},
{<|"r" -> 0.255221, "i" -> -0.364687|>,
<|"r" -> 0.191895, "i" -> -0.337437|>,
<|"r" -> -0.12278, "i" -> 0.551195|>,
<|"r" -> 0.560485, "i" -> 0.134702|>}
}
Given this, I can write
testmatrix = Join[Values[matrix], 2]`
to get a matrix, but it is a matrix of tuples. How can I get the complex number defined in each <|r -> Re[z], i -> Im[z]|>
rather than the tuples?
matrix expression-manipulation associations
matrix expression-manipulation associations
edited 3 hours ago
MarcoB
36.6k556112
36.6k556112
asked 11 hours ago
MKFMKF
1588
1588
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192530%2fobtaining-a-matrix-of-complex-values-from-associations-giving-the-real-and-imagi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
$endgroup$
Apply[Complex, matrix, {2}]
{{0.368252 +0.0199587 I,-0.461644+0.109868 I,-0.216081+0.562557 I,-0.479881-0.212978 I},
{0.105028 +0.632264 I,0.116589 -0.490063 I,0.463378 +0.231656 I,-0.148665+0.212065 I},
{0.463253 +0.201161 I,0.460547 +0.397829 I,0.222257 +0.0129121 I,0.168641 -0.544568 I},
{0.255221 -0.364687 I,0.191895 -0.337437 I,-0.12278+0.551195 I,0.560485 +0.134702 I}}
answered 6 hours ago
kglrkglr
186k10203422
186k10203422
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
TheApply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g.Complex @@ {Pi, Sqrt[2]}
.
$endgroup$
– J. M. is computer-less♦
3 hours ago
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
Huh, that's a great one! A word of warning though: This method produces unpacked arrays.
$endgroup$
– Henrik Schumacher
4 hours ago
$begingroup$
The
Apply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}
.$endgroup$
– J. M. is computer-less♦
3 hours ago
$begingroup$
The
Apply[Complex]
method will also fail if the entries are not integers or inexact real numbers, e.g. Complex @@ {Pi, Sqrt[2]}
.$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
$endgroup$
matrix[[All, All, "r"]] + I matrix[[All, All, "i"]]
or
Join[Values[matrix], 2].{1, I}
edited 4 hours ago
answered 11 hours ago
Henrik SchumacherHenrik Schumacher
55.3k576154
55.3k576154
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
$begingroup$
Even better:Values[matrix].{1, I}
, which preserves the matrix structure.
$endgroup$
– J. M. is computer-less♦
3 hours ago
$begingroup$
Even better:
Values[matrix].{1, I}
, which preserves the matrix structure.$endgroup$
– J. M. is computer-less♦
3 hours ago
$begingroup$
Even better:
Values[matrix].{1, I}
, which preserves the matrix structure.$endgroup$
– J. M. is computer-less♦
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192530%2fobtaining-a-matrix-of-complex-values-from-associations-giving-the-real-and-imagi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown